Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively. Calibration curves were constructed using the NIR spectra of the tablets that show the quantitative linear relationship between the concentration and height of the second derivative at 4260 cm for COL and at 5800 cm for COL and CS. An equation to calculate the CS-to-COL ratio was derived from the calibrated slopes at 5800 and 4260 cm, and the utility of the equation was demonstrated by the evaluation of tablets. Moreover, we conducted an evaluation of the CS-to-COL ratio in the aqueous nucleus pulposus and annulus fibrosus, and the results were consistent with the glycosaminoglycans (GAGs)-to-COL ratios obtained through Raman spectroscopy of the same specimens. Thus, this method is adequate for evaluating PGs with large amount of water non-destructively, non-invasively and with less damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s44211-025-00715-xDOI Listing

Publication Analysis

Top Keywords

non-destructively non-invasively
12
evaluation method
8
nir spectroscopy
8
large amount
8
amount water
8
water non-destructively
8
cs-to-col ratio
8
evaluation
4
method proteoglycans
4
proteoglycans near-infrared
4

Similar Publications

Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.

View Article and Find Full Text PDF

Neutron tomography is gaining popularity particularly in cultural heritage research, for non-destructively analysing the inner structure of bulk metal artefacts, such as bronzes, but the induced temporary decay radiation is often considered as a drawback. However, this delayed gamma-emission can be put to good use: by performing gamma spectroscopy after neutron tomography, the interior elemental composition of artefacts can be obtained "for free". Inspired by this, we propose a ray-tracing approach to non-invasively quantify both interior geometry and elemental composition using only a single neutron tomography experiment.

View Article and Find Full Text PDF

Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported.

View Article and Find Full Text PDF

Nanophotonic and hydrogel-based diagnostic system for the monitoring of chronic wounds.

Biosens Bioelectron

December 2023

School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.

Chronic wounds present a major healthcare burden, yet most wounds are only assessed superficially, and treatment is rarely based on the analysis of wound biomarkers. This lack of analysis is based on the fact that sampling of wound biomarkers is typically invasive, leading to a disruption of the wound bed while biomarker detection and quantification is performed in a remote laboratory, away from the point of care. Here, we introduce the diagnostic element of a novel theranostic system that can non-invasively sample biomarkers without disrupting the wound and that can perform biomarker quantification at the point of care, on a short timescale.

View Article and Find Full Text PDF

Inline NMR via a Dedicated V-Shaped Sensor.

Sensors (Basel)

February 2023

Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.

Process monitoring and control require dedicated and reliable measures which reflect the status of the process under investigation. Although nuclear magnetic resonance is known to be a versatile analytical technique, it is only seldomly found in process monitoring. Single-sided nuclear magnetic resonance is one well known approach for being applied in process monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!