Drosophila modeling to identify causative genes and reveal the underlying molecular mechanisms for primary ovarian insufficiency.

J Mol Med (Berl)

Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.

Published: January 2025

Primary ovarian insufficiency (POI) is a disease defined as a reduction in ovarian function under the age of 40 and represents the main cause of female infertility. In recent years, many genetic mutations associated with POI have been identified using high-throughput sequencing technology. However, one big challenge today is to determine the disease-causing gene associations through functional assessment. Here, we develop a Drosophila model to study the POI-associated genes and provide in vivo functional evidence to validate the POI-causing genes. We use two different Gal4 drivers, in combination with RNAi transgene, and systematically knockdown 51 genes associated with POI. We show that 22 and 17 genes are required for female fertility and ovarian development in somatic and germline cells, respectively. Moreover, we also focus on AlaRS-m, the Drosophila ortholog of the human AARS2 gene, for further functional characterization. Depletion of AlaRS-m in ovarian somatic cells leads to decreased female fertility and a reduction in ovary size, as well as egg chamber degeneration. We also provide evidence that AlaRS-m deficiency causes mitochondrial dysfunction, overproduction of ROS, and apoptotic cell death. Our findings demonstrate that Drosophila can be used as a platform to assess the functional significance of POI-associated genes identified in genomic studies and illustrate the molecular mechanism underlying the pathogenesis of POI. KEY MESSAGES: • One hundred fourteen genes associated with POI are identified, and 76 of them have Drosophila orthologs. • Twenty-two genes and 17 genes are required for female fertility when knocked down in the Drosophila ovarian somatic cells and germline cells, respectively. • AlaRS-m/AARS2 deficiency causes female fertility defects with egg chamber degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-025-02516-1DOI Listing

Publication Analysis

Top Keywords

female fertility
16
associated poi
12
genes
9
primary ovarian
8
ovarian insufficiency
8
poi identified
8
poi-associated genes
8
genes associated
8
genes required
8
required female
8

Similar Publications

Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation.

Redox Biol

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:

Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age and requires better treatment. -acetylcysteine (NAC) is known to be beneficial under such conditions owing to its antioxidant potential and insulin-sensitizing properties. The effect of NAC on the reproductive outcomes of PCOS patients was examined in this meta-analysis.

View Article and Find Full Text PDF

Background/objectives: Both hyperandrogenism (HA) and vitamin D deficiency (VDD) can separately lead to impaired vascular reactivity and ovulatory dysfunction in fertile females. The aim was to examine the early interactions of these states in a rat model of PCOS.

Methods: Four-week-old adolescent female rats were divided into four groups: vitamin D (VD)-supplemented ( = 12); VD-supplemented and testosterone-treated ( = 12); VDD- ( = 11) and VDD-and-testosterone-treated ( = 11).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!