This study introduces EpiAgePublic, a new method to estimate biological age using only three specific sites on the gene known for its connection to aging. Unlike traditional methods that require complex and extensive data, our model uses a simpler approach that is well-suited for next-generation sequencing technology, which is a more advanced method of analyzing DNA methylation. This new model overcomes some of the common challenges found in older methods, such as errors due to sample quality and processing variations. We tested EpiAgePublic with a large and varied group of over 4,600 people to ensure its accuracy. It performed on par with, and sometimes better than, more complicated models that use much more data for age estimation. We examined its effectiveness in understanding how factors like HIV infection and stress affect aging, confirming its usefulness in real-world clinical settings. Our results prove that our simple yet effective model, EpiAgePublic, can capture the subtle signs of aging with high accuracy. We also used this model in a study involving patients with Alzheimer's Disease, demonstrating the practical benefits of next-generation sequencing in making precise age-related assessments. This study lays the groundwork for future research on aging mechanisms and assessing how different interventions might impact the aging process using this clock.

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.206188DOI Listing

Publication Analysis

Top Keywords

biological age
8
next-generation sequencing
8
aging
5
epiage next-generation
4
next-generation sequencing-based
4
sequencing-based epigenetic
4
epigenetic clock
4
clock biological
4
age assessment
4
assessment saliva
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!