Vesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy. This review will provide an in-depth understanding of vesicular mechanisms of apicomplexan parasites, Plasmodium and Toxoplasma (that respectively cause malaria and toxoplasmosis). It will integrate mechanistic and evolutionarily insights gained from these and other pathogenic eukaryotes to develop a new model for plasmodial resistance to artemisinins, a class of drugs that have been the backbone of modern campaigns to eliminate malaria worldwide. We also discuss extracellular vesicles that present major vesicular mechanisms of drug resistance in parasite protozoa (that apicomplexans are part of). Finally, we provide a broader context of clinical drug resistance mechanisms of Plasmodium, Toxoplasma, as well as Cryptosporidium and Babesia, that are prominent members of the phyla, causative agents of cryptosporidiosis and babesiosis and significant for human and animal health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/mmbr.00010-24 | DOI Listing |
J Allergy Clin Immunol
January 2025
Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:
Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.
Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.
Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.
J Adv Res
January 2025
Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China. Electronic address:
Introduction: Autism spectrum disorder (ASD) represents a multifaceted set of neurodevelopmental conditions marked by social deficits and repetitive behaviors. Astragaloside IV (ASIV), a natural compound derived from the traditional Chinese herb Astragali Radix, exhibits robust neuroprotective effects. However, whether ASIV can ameliorate behavioral deficits in ASD remains unknown.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2025
Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001 India. Electronic address:
Oropouche virus (OROV), an emerging arbovirus, poses a significant public health challenge in tropical and subtropical regions, with no licensed vaccines or antiviral therapies currently available. This review explores recent advancements in therapeutic strategies and vaccine development for OROV, focusing on molecular mechanisms of viral replication, identification of potential antiviral targets, and the role of immunotherapy in managing infections. Promising antiviral candidates, including ribavirin, mycophenolic acid, and interferon, have demonstrated efficacy in in vitro studies, offering a foundation for further investigation.
View Article and Find Full Text PDFViruses
December 2024
Thomas H. Gosnell School for Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!