Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility. Subsequently, we performed mediation analysis to explore the potential mediating effect of obesity on infertility in association with anion exposure. Increased concentrations of perchlorate and nitrate showed inverse correlations with the risk of obesity (OR = 0.73, 95% CI: 0.55-0.96; OR = 0.59, 95% CI: 0.40-0.87). Perchlorate was negatively associated with infertility (OR = 0.68, 95% CI: 0.51-0.91), and obesity was a mediator in association between perchlorate and infertility. These findings suggest that women of reproductive age may be protected from obesity and infertility by exposure to perchlorate and nitrate, with obesity acting as a moderating factor in the observed association. This study provides a valuable understanding of the complex links between environmental contaminants, obesity, and reproductive health, and identifies potential strategies to reduce the risk of infertility and improve women's health.

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics13010015DOI Listing

Publication Analysis

Top Keywords

perchlorate nitrate
16
obesity infertility
12
obesity
9
nitrate thiocyanate
8
nhanes 2013-2018
8
obesity reproductive
8
women reproductive
8
reproductive age
8
infertility
7
perchlorate
6

Similar Publications

Classified as endocrine disrupting chemicals (EDCs), perchlorate, nitrate, and thiocyanate have been implicated with obesity and reproductive disorders. This study used three cycles of the National Health and Nutrition Examination Survey (NHANES 2013-2018); 813 women of reproductive age were finally included. We used multivariable logistic regression to analyze the associations between the three anions and obesity and infertility.

View Article and Find Full Text PDF

Background: Perchlorate, nitrate, and thiocyanate are well-known sodium/iodide symporter (NIS) inhibitors that disturb iodide uptake at the thyroid, affecting thyroid function. However, the associations between NIS inhibitor exposure and thyroid function are not well summarized in humans.

Objective: We aimed to summarize associations between NIS inhibitor exposure and thyroid function markers and to identify key information gaps for future studies.

View Article and Find Full Text PDF

Objectives: Perchlorates, nitrates, and thiocyanates constitute environmental endocrine disruptors; however, health damage caused by absorption through the respiratory tract remains poorly studied. We investigated the effects of inhalation of these pollutants on thyroid function and structure and serum metabolomics in pregnant rats.

Methods: We established a Sprague-Dawley pregnant rat model exposed to perchlorate, nitrate, and thiocyanate at different gestational stages and compared maternal serum thyroid function levels, foetal development, thyroid morphology, and pathological changes between exposed and non-exposed groups at different concentrations.

View Article and Find Full Text PDF

One very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO and nitrate NO as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)] (1).

View Article and Find Full Text PDF

Four new and one previously reported silver 4,4'-vinylenedipyridine (Vpe) coordination polymers were tested as anion exchange materials to assess their potential for pollutant sequestration and compared to analogous silver 4,4'-bipyridine (bipy) coordination polymers. The materials were synthesized using nitrate, tetrafluoroborate, perchlorate, perrhenate, or chromate as the anion to produce cationic coordination polymers with solubilities ranging from 0.0137(7) to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!