Developmental exposure to benzo[a]pyrene (BaP), a ubiquitous environmental pollutant, has been linked to various toxic effects, including multigenerational behavioral impairment. While the specific mechanisms driving BaP neurotoxicity are not fully understood, recent work highlights two important determinants of developmental BaP neurotoxicity: (1) the aryl hydrocarbon receptor (AHR), which induces host metabolism of BaP, and (2) the gut microbiome, which may interact with BaP to affect its metabolism, or be perturbed by BaP to disrupt the gut-brain axis. We utilized the zebrafish model to explore the role of AHR, the gut microbiome, and their interaction, on BaP-induced neurotoxicity. We tested (1) how developmental BaP exposure and AHR2 perturbation in zebrafish link to adult behavior, (2) how these variables associate with the structure and function of the adult zebrafish gut metagenome, and (3) whether these associations are multigenerational. Our findings reveal a reticulated axis of association between BaP exposure, developmental AHR2 expression, the zebrafish gut metagenome, and behavior. Results indicate that AHR2 is a key modulator of how BaP elicits neurotoxicity and microbiome dysbiosis. Additionally, this axis of association manifests generationally. These findings demonstrate the importance of studying pollutant-microbiome interactions and elucidate the role of specific host genes in neurotoxicity and dysbiosis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/toxics13010010DOI Listing

Publication Analysis

Top Keywords

gut microbiome
12
bap
9
gut-brain axis
8
developmental exposure
8
exposure benzo[a]pyrene
8
bap neurotoxicity
8
developmental bap
8
bap exposure
8
zebrafish gut
8
gut metagenome
8

Similar Publications

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Antimicrobial regime for gut microbiota depletion in experimental mice models.

Methods Cell Biol

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication.

J Control Release

January 2025

Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China. Electronic address:

Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!