Evaluating Forelimb and Hindlimb Joint Conformation of Morna Racehorses ().

Vet Sci

Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR 523808, China.

Published: January 2025

Measuring limb joint angles is crucial for understanding horse conformation, performance, injury diagnosis, and prevention. While Thoroughbred horses have been extensively studied, local Pakistani breeds (e.g., Morna racehorse) have not received scientific attention. This study aimed to quantify normal angles of limb joints in the Morna breed. Limb joint angles of standing horses (n = 50) were quantified using a measuring tape, height stick, protractor scale, and goniometer. The mean and standard deviation (Mean ± SD) values for the forelimb joint angles were 123.02 ± 3.46° for elbow, 171.52 ± 2.39° for knee, and 147.68 ± 5.11° for fetlock. The mean ± SD values for the hindlimb joint angles were 128.62 ± 4.08° for stifle, 160.40 ± 3.89° for hock, and 155.48 ± 2.68° for fetlock. There was a non-significant ( > 0.05) correlation between horse joint angles and, age, body weight, and body condition score (BCS). The elbow and stifle joint angles of Morna align well with characteristics associated with optimal racing performance. However, the hock and fetlock angles differ from jumping Thoroughbred and French trotters. We recommend further research to examine the conformation of the Morna breed, particularly by measuring the lengths of limb segments and correlating it with joint angles. This may provide valuable insights into individual variations within the breed.

Download full-text PDF

Source
http://dx.doi.org/10.3390/vetsci12010020DOI Listing

Publication Analysis

Top Keywords

joint angles
28
angles
9
joint
8
hindlimb joint
8
conformation morna
8
limb joint
8
morna breed
8
morna
5
evaluating forelimb
4
forelimb hindlimb
4

Similar Publications

Background: Calcaneal fracture malunion (CFM) commonly occurs with multiple pathologic changes and progressive pain and difficulty walking. The purpose of this study was to propose a modified 3-plane joint-preserving osteotomy for the treatment of CFM with subtalar joint incongruence, and to compare its efficacy to subtalar arthrodesis.

Methods: A retrospective comparative analysis of the data of 56 patients with CFM admitted from January 2017 to December 2022 was performed.

View Article and Find Full Text PDF

Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.

View Article and Find Full Text PDF

To address the issue of low-elevation target height measurement in the Multiple Input Multiple Output (MIMO) radar, this paper proposes a height measurement method for meter-wave MIMO radar based on transmitted signals and receive filter design, integrating beamforming technology and cognitive processing methods. According to the characteristics of beamforming technology forming nulls at interference locations, we assume that the direct wave and reflected wave act as interference signals and hypothesize a direction for a hypothetical target. Then, the data received are processed to obtain the height of low-elevation-angle targets using a cognitive approach that jointly optimizes the transmitted signal and receive filter.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over the palm and fingers. In order to alleviate slippage, improve comfort, reduce sizing issues, and eliminate movement restrictions, this paper presents a new low-cost data glove with an innovative open-palm and finger-free design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!