This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine. After 96 h of culture, the apoptosis rate, mitochondrial membrane potential, reactive oxygen species, and ATP were measured to evaluate the effects of serum starvation on the SMSCs' metabolism. Additionally, the levels of autophagy-related proteins, autophagosomes, and autolysosomes were measured to investigate the impact of long-term serum starvation on autophagy. The expression of proteins associated with myogenic and adipogenic differentiation (MHC, MyoD1, peroxisome proliferator-activated receptor , and lipoprotein lipase) as well as lipid content were also determined to investigate the effects of long-term serum starvation on SMSC differentiation. The results showed that long-term serum starvation induced autophagy through the AMPK/mTOR signaling pathway, accelerated cell metabolism and apoptosis, exacerbated reactive oxygen species accumulation, and inhibited myogenic and adipogenic differentiation of SMSCs. Moreover, these effects were positively correlated with the level of serum starvation. In addition, serum starvation-induced autophagy moderately promoted the myogenic and adipogenic differentiation of SMSCs; however, these effects were insufficient to counteract the inhibition of cell differentiation by long-term serum starvation. This study provides insight into leveraging serum starvation as a stressor to regulate muscle growth and metabolism in domestic pigs.

Download full-text PDF

Source
http://dx.doi.org/10.3390/vetsci12010011DOI Listing

Publication Analysis

Top Keywords

serum starvation
48
long-term serum
24
serum
17
effects long-term
12
starvation
12
starvation autophagy
12
skeletal muscle
12
myogenic adipogenic
12
adipogenic differentiation
12
autophagy metabolism
8

Similar Publications

This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.

View Article and Find Full Text PDF

Polydatin-Induced Shift of Redox Balance and Its Anti-Cancer Impact on Human Osteosarcoma Cells.

Curr Issues Mol Biol

December 2024

Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.

Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis.

View Article and Find Full Text PDF

This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths.

View Article and Find Full Text PDF

Filter-aided extracellular vesicle enrichment (FAEVEr) for proteomics.

Mol Cell Proteomics

January 2025

VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium. Electronic address:

Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices.

View Article and Find Full Text PDF

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!