Background/objectives: Since the World Health Organization declared COVID-19 a pandemic in March 2020, the virus has caused multiple waves of infection globally. Arizona State University (ASU), the largest four-year university in the United States, offers a uniquely diverse setting for assessing immunity within a large community. This study aimed to test our hypothesis that an increased number of exposures to SARS-CoV-2 RBD through vaccination/boosters/infection will increase SARS-CoV-2 antibody seroprevalence by increasing the longevity of anti-RBD and anti-RBD-neutralizing antibodies.
Methods: A serosurvey was conducted at ASU from 30 January to 3 February 2023. Participants completed questionnaires about demographics, respiratory infection history, symptoms, and COVID-19 vaccination status. Blood samples were analyzed for anti-receptor binding domain (RBD) IgG and anti-nucleocapsid (NC) antibodies, offering a comprehensive view of immunity from both natural infection and vaccination.
Results: The seroprevalence of anti-RBD IgG antibodies was 96.2% (95% CI: 94.8-97.2%), and 64.9% (95% CI: 61.9-67.8%) of participants had anti-NC antibodies. Anti-RBD IgG levels correlated strongly with neutralizing antibody levels, and participants who received more vaccine doses showed higher levels of both anti-RBD IgG and neutralizing antibodies. Increasing the number of exposures through vaccination and/or infection resulted in higher and long-lasting antibodies.
Conclusions: The high levels of anti-RBD antibodies observed reflect substantial vaccine uptake within this population. Ongoing vaccination efforts, especially as new variants emerge, are essential to maintaining protective antibody levels. These findings underscore the importance of sustained public health initiatives to support broad-based immunity and protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/vaccines13010061 | DOI Listing |
Vaccines (Basel)
January 2025
Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
Background/objectives: Since the World Health Organization declared COVID-19 a pandemic in March 2020, the virus has caused multiple waves of infection globally. Arizona State University (ASU), the largest four-year university in the United States, offers a uniquely diverse setting for assessing immunity within a large community. This study aimed to test our hypothesis that an increased number of exposures to SARS-CoV-2 RBD through vaccination/boosters/infection will increase SARS-CoV-2 antibody seroprevalence by increasing the longevity of anti-RBD and anti-RBD-neutralizing antibodies.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Clinical and Translational Science Institute, University of Rochester, Rochester, NY 14642, USA.
: The global COVID-19 pandemic has resulted in approximately 7 million deaths and a historic vaccination effort, with over 13.6 billion doses administered. Despite this, understanding of immune responses in vulnerable populations, such as transplant recipients (TR) and hemodialysis patients (HD), remains limited, especially outside the US and Europe.
View Article and Find Full Text PDFHum Immunol
January 2025
Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:
Background: It has been demonstrated that COVID-19 vaccines confer significant protection, but temporal decay in the vaccine-induced antibodies has been reported; therefore, a third booster dose was considered. Human leukocyte antigen (HLA) class II molecules act as antigen presenting structures, play critical roles in the formation of an efficient antibody response. The current study aimed to evaluate the anti-receptor binding domain (RBD) antibody response after the booster dose of SpikoGen® vaccine in individuals with a history of Sinopharm primary vaccination series and its association with HLA-DQB1 and -DRB alleles.
View Article and Find Full Text PDFPLoS One
January 2025
Sleman Health and Demographic Surveillance System, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Background: This study describes the seroconversion and serodynamics of IgG antibodies against the RBD of SARS-CoV-2 in the general population of Sleman District, Yogyakarta Special Province. We aim to identify possible factors that correlate with the seroconversion and serodynamics of IgG antibodies against the RBD of SARS-CoV-2.
Methods: We performed a longitudinal study of the population at Health and Demographic Surveillance System (HDSS) Sleman, Yogyakarta, Indonesia.
Vaccine
February 2025
Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia. Electronic address:
Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!