In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1. QW, bottom, 2. QW, middle, and 3. QW, upper). During the heating process, we found that the homogenization of the QWs occurred in the temperature range of 850 °C to 920 °C, manifesting in a reduction in ICDs in the QWs. Furthermore, there is a critical temperature ( = 940 °C) at which the mean value of the indium concentration starts to decrease below 15% in 1. QW, indicating the initiation of decomposition in 1. QW. Moreover, further heating up to 1000 °C results in extended diffuse scattering along the angular direction of the diffraction spot, confirming the propagation of the decomposition and the formation of trapezoidal objects, which contain voids and amorphous materials (In-Ga). Heating InGaN QWs up to = 1000 °C led to a simultaneous decrease in the indium content and ICDs. During the cooling phase, there was no significant variation in the indium concentrations in the different QWs but rather an increase in the defect area, which contributes to the amplification of diffuse scattering. A comparison of ex situ complementary high-resolution transmission microscopy (Ex-HRTEM) measurements performed at room temperature before and after the thermal cycle treatment provides proof of the formation of four different types of defects in the QWs, which result from the decomposition of 1. QW during the heating phase. This, in turn, has strongly influenced the intensity of the photoluminescence emission spectra without any detectable shift in the emission wavelength λ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15020140 | DOI Listing |
Polymers (Basel)
January 2025
Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia.
An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Mitsubishi Gas Chemical Company, Inc., Tokyo 100-8324, Japan.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
This study investigates the effect of the exsolution behavior of alumina-rich spinel on the formation and distribution of CA (CaAlO) in corundum castables bonded with calcium aluminate cement. In this study, alumina-rich spinel is substituted for tabular corundum in the same proportions and grain size. The matrices after curing were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hunan Key Laboratory of Applied Environmental Photocatalysis, School of Materials and Environmental Engineering, Changsha University, Changsha 410022, China.
The development of materials with high adsorption capacity for capturing CO from industrial exhaust gases has proceeded rapidly in recent years. LiSiO has attracted attention due to its low cost, high capture capacity, and good cycling stability for direct high-temperature CO capture. Thus far, the CO adsorption mechanism of LiSiO is poorly understood, and detailed phase transformations during the CO adsorption process are missing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!