A Microfabrication Technique for High-Performance Diffractive Optical Elements Tailored for Numerical Simulation.

Nanomaterials (Basel)

Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China.

Published: January 2025

Diffractive optical elements (DOEs) are specialized optical components that manipulate light through diffraction for various applications, including holography, spectroscopy, augmented reality (AR) and virtual reality (VR), and light detection and ranging (LiDAR). The performance of DOEs is highly determined by fabricated materials and fabrication methods, in addition to the numerical simulation design. This paper presents a microfabrication technique optimized for DOEs, enabling precise control of critical parameters, such as refractive index (RI) and thickness. Using photolithography, we fabricated high-precision photoresist patterns on silicon and sapphire substrates, with 3 × 3 and 3 × 5 DOE beam splitter as examples. The results show a strong match between simulation and experimental data, with discrepancies of just 0.53% and 0.57% for DOE on silicon and sapphire substrates, respectively. This approach offers potential for advancing high-performance DOE devices in semiconductor manufacturing, supporting next-generation optical systems.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15020138DOI Listing

Publication Analysis

Top Keywords

microfabrication technique
8
diffractive optical
8
optical elements
8
numerical simulation
8
silicon sapphire
8
sapphire substrates
8
technique high-performance
4
high-performance diffractive
4
optical
4
elements tailored
4

Similar Publications

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.

View Article and Find Full Text PDF

Atomic magnetometers are highly sensitive instruments widely used for measurements of weak magnetic field. Extracting vector information while maintaining high-precision scalar detection has become the trend in atomic magnetometer development. We introduce a vector atomic magnetometer containing a 5 mm-thick microfabricated vapor cell operating in free-induction-decay mode.

View Article and Find Full Text PDF

A Microfabrication Technique for High-Performance Diffractive Optical Elements Tailored for Numerical Simulation.

Nanomaterials (Basel)

January 2025

Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China.

Diffractive optical elements (DOEs) are specialized optical components that manipulate light through diffraction for various applications, including holography, spectroscopy, augmented reality (AR) and virtual reality (VR), and light detection and ranging (LiDAR). The performance of DOEs is highly determined by fabricated materials and fabrication methods, in addition to the numerical simulation design. This paper presents a microfabrication technique optimized for DOEs, enabling precise control of critical parameters, such as refractive index (RI) and thickness.

View Article and Find Full Text PDF

In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and () in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!