This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm. To assess the impact of tool properties across a wide range of commercially available tools, four diverse multilayered cemented carbide tools were evaluated: Tool A and Tool B with a thin AlTiSiN PVD coating, Tool C with a thick AlO-TiCN CVD coating, and Tool D with a thin AlO-TiC PVD coating. The machinability of CGI and wear mechanisms were analyzed using pre-cutting characterization, in-process optical microscopy, and post-test SEM analysis. The results revealed that CGI microstructural variations only affected tool life for Tool A, with a 110% increase in tool life between machining CGI Grade B and Grade A, but that the effects were negligible for all other tools. Tool C had a 250% and 70% longer tool life compared to the next best performance (Tool A) for CGI Grade A and CGI Grade B, respectively. With its thick CVD-coating, Tool C consistently outperformed the others due to its superior protection of the flank face and cutting edge under high-stress conditions. The cutting-induced stresses played a more significant role in the tool wear process than minor differences in workpiece microstructure or tool properties, and a thick CVD coating was most effective in addressing the tool wear effects for the extreme roughing conditions. However, differences in tool life for Tool A showed that tool behavior cannot be predicted based on a single system parameter, even for extreme conditions. Instead, tool properties, workpiece properties, cutting conditions, and their interactions should be considered collectively to evaluate the extent that an individual parameter impacts machinability. This research demonstrates that a comprehensive approach such as this can allow for more effective tool selection and thus lead to significant cost savings and more efficient manufacturing operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15020130 | DOI Listing |
J Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada.
Reaching competency in congenital heart surgery (CHS) requires lengthy and rigorous training. Due to patient safety, time limitations, and procedural complexity, the intraoperative setting is not ideal for technical practice. Surgical simulation using synthetic, biological, or virtual models is an increasingly valuable educational tool for technical training and assessment.
View Article and Find Full Text PDFJ Clin Exp Neuropsychol
January 2025
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.
View Article and Find Full Text PDFInt J Audiol
January 2025
Hashir International Specialist Clinics & Research Institute for Misophonia, Tinnitus and Hyperacusis, London and Guildford, UK.
Objective: The aim was to establish the validity and reliability of the English version of MisoQuest, a 14-item misophonia questionnaire initially validated in the Polish language.
Design: Reliability was examined through internal consistency, measurement error, and test-retest reliability. Validity was evaluated with confirmatory factor analysis, convergent, and discriminant validity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!