The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment. To understand nanoplastics retention by freshwater organisms, phyto- and zooplankton, and mussels were exposed to gold-doped polymeric nanoparticles synthesized in our laboratory. The results demonstrated that measuring gold content using inductively coupled plasma mass spectrometry (ICP-MS), along with confirmation of its presence through electron microscopy in selected exposed samples provides insight into the accumulation and release of nanoplastics by organisms playing a relevant ecological role at the early levels of aquatic food webs.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15020116DOI Listing

Publication Analysis

Top Keywords

nanoplastics bioaccumulation
8
freshwater organisms
8
gold-doped polymeric
8
polymeric nanoparticles
8
exploring nanoplastics
4
bioaccumulation freshwater
4
organisms
4
organisms study
4
study gold-doped
4
nanoparticles evaluation
4

Similar Publications

The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment.

View Article and Find Full Text PDF

Mechanistic Insights into the Effects of Aged Polystyrene Nanoplastics on the Toxicity of Cadmium to Triticum Aestivum.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.

The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.

View Article and Find Full Text PDF

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

Amplification of benzo[a]pyrene toxicity persistence in earthworms by polystyrene nanoplastics: From organismal health to molecular responses.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.. Electronic address:

Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!