In this study, a single zirconium carbide (ZrC) nanoneedle structure oriented in the <100> direction was fabricated by a dual-beam focused ion beam (FIB-SEM) system, and its field emission characteristics and emission current stability were evaluated. Benefiting from controlled fabrication with real-time observation, the ZrC nanoneedle has a smooth surface and a tip with a radius of curvature smaller than 20 nm and a length greater than 2 μm. Due to its low work function and well-controlled morphology, the ZrC nanoneedle emitter, positioned in a high-vacuum chamber, was able to generate a single and collimated electron beam with a current of 1.2 nA at a turn-on voltage of 210 V, and the current increased to 100 nA when the applied voltage reached 325 V. After the treatment of the nanoneedle tip, the field emission exhibited a stable emission for 150 min with a fluctuation of 1.4% and an emission current density as high as 1.4 × 10 A m. This work presents an efficient and controllable method for fabricating nanostructures, and this method is applicable to the transition metal compound ZrC as a field emission emitter, demonstrating its potential as an electron source for electron-beam devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15020093 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA.
In this study, a single zirconium carbide (ZrC) nanoneedle structure oriented in the <100> direction was fabricated by a dual-beam focused ion beam (FIB-SEM) system, and its field emission characteristics and emission current stability were evaluated. Benefiting from controlled fabrication with real-time observation, the ZrC nanoneedle has a smooth surface and a tip with a radius of curvature smaller than 20 nm and a length greater than 2 μm. Due to its low work function and well-controlled morphology, the ZrC nanoneedle emitter, positioned in a high-vacuum chamber, was able to generate a single and collimated electron beam with a current of 1.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
Dendritic cells (DCs) are critical regulators of T cell immunity, with immense therapeutic potential against tumors and autoimmune diseases. Efficient gene editing in DCs is crucial for understanding their regulatory mechanisms and maximizing their therapeutic efficacy. However, DCs are notoriously difficult to transfect, posing a major bottleneck for conventional DNA and RNA-based editing approaches.
View Article and Find Full Text PDFBiosensors (Basel)
May 2024
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
Real-time monitoring of physiological indicators inside the body is pivotal for contemporary diagnostics and treatments. Implantable electrodes can not only track specific biomarkers but also facilitate therapeutic interventions. By modifying biometric components, implantable electrodes enable in situ metabolite detection in living tissues, notably beneficial in invasive glucose monitoring, which effectively alleviates the self-blood-glucose-managing burden for patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!