Objectives: Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully automated AI model using vision transformers (ViTs) and convolutional neural networks (CNNs) to detect and segment kidneys and kidney tumors in Contrast-Enhanced (CECT) scans, with a focus on improving sensitivity for small, indistinct tumors.

Methods: The segmentation framework employs a ViT-based model for the kidney organ, followed by a 3D UNet model with enhanced connections and attention mechanisms for tumor detection and segmentation. Two CECT datasets were used: a public dataset (KiTS23: 489 scans) and a private institutional dataset (Private: 592 scans). The AI model was trained on 389 public scans, with validation performed on the remaining 100 scans and external validation performed on all 592 private scans. Tumors were categorized by TNM staging as small (≤4 cm) (KiTS23: 54%, Private: 41%), medium (>4 cm to ≤7 cm) (KiTS23: 24%, Private: 35%), and large (>7 cm) (KiTS23: 22%, Private: 24%) for detailed evaluation.

Results: Kidney and kidney tumor segmentations were evaluated against manual annotations as the reference standard. The model achieved a Dice score of 0.97 ± 0.02 for kidney organ segmentation. For tumor detection and segmentation on the KiTS23 dataset, the sensitivities and average false-positive rates per patient were as follows: 0.90 and 0.23 for small tumors, 1.0 and 0.08 for medium tumors, and 0.96 and 0.04 for large tumors. The corresponding Dice scores were 0.84 ± 0.11, 0.89 ± 0.07, and 0.91 ± 0.06, respectively. External validation on the private data confirmed the model's effectiveness, achieving the following sensitivities and average false-positive rates per patient: 0.89 and 0.15 for small tumors, 0.99 and 0.03 for medium tumors, and 1.0 and 0.01 for large tumors. The corresponding Dice scores were 0.84 ± 0.08, 0.89 ± 0.08, and 0.92 ± 0.06.

Conclusions: The proposed model demonstrates consistent and robust performance in segmenting kidneys and kidney tumors of various sizes, with effective generalization to unseen data. This underscores the model's significant potential for clinical integration, offering enhanced diagnostic precision and reliability in radiological assessments.

Download full-text PDF

Source
http://dx.doi.org/10.3390/tomography11010003DOI Listing

Publication Analysis

Top Keywords

kidney tumors
12
tumors
10
model enhanced
8
kidney
8
kidney tumor
8
kidneys kidney
8
kidney organ
8
tumor detection
8
detection segmentation
8
validation performed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!