Actinomycete-Derived Pigments: A Path Toward Sustainable Industrial Colorants.

Mar Drugs

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal.

Published: January 2025

Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes. This shift is largely driven by consumer demand for sustainable options. For bio-pigments, actinomycetes, particularly from the genus, have emerged as a promising green source, aligning with global sustainability goals due to their renewability and biodegradability. Scale-up of production and yield optimization challenges have been circumvented with the aid of biotechnology advancements, including genetic engineering and innovative fermentation and extraction methods, which have enhanced these bio-pigments' viability and cost-competitiveness. Actinomycete-derived pigments have successfully transitioned from laboratory research to commercialization, showcasing their potential as sustainable and eco-friendly alternatives to synthetic dyes. With the global pigment market valued at approximately USD 24.28 billion in 2023, which is projected to reach USD 36.58 billion by 2030, the economic potential for actinomycete pigments is extensive. This review explores the environmental advantages of actinomycete pigments, their role in modern industry, and the regulatory and commercialization challenges they face, highlighting the importance of these pigments as promising solutions to reduce our reliance on conventional toxic pigments. The successful commercialization of actinomycete pigments can drive an industry-wide transition to environmentally responsible alternatives, offering substantial benefits for human health, safety, and environmental sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.3390/md23010039DOI Listing

Publication Analysis

Top Keywords

actinomycete pigments
12
pigments
10
actinomycete-derived pigments
8
pigments derived
8
consumer demand
8
demand sustainable
8
sustainable options
8
eco-friendly alternatives
8
pigments path
4
sustainable
4

Similar Publications

Actinomycete-Derived Pigments: A Path Toward Sustainable Industrial Colorants.

Mar Drugs

January 2025

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal.

Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Metal Ion Supplementation to Boost Melanin Production by .

Int J Mol Sci

January 2025

Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Monte sant'Angelo Campus, Via Cintia 4, 80126 Naples, Italy.

As Streptomycetes might produce melanin to survive in stressful environmental conditions, like under metal exposure, supplementing metal ions to the growth medium could be a wise strategy for boosting the production of the pigment. The aim of this study was to test, for the first time, the possibility of boosting DSM40314 melanin biosynthesis by adding to the growth medium singularly or, at the same time, different concentrations (1.0, 1.

View Article and Find Full Text PDF

Metagenome-resolved functional traits of Rubrobacter species implicated in rosy discoloration of ancient frescoes in two Georgian Cathedrals.

Sci Total Environ

January 2025

Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61, 90133 Palermo, Italy. Electronic address:

Pink biofilm formation on stone monuments and mural paintings poses serious harm to cultural heritage preservation. Pink biofilms are globally widespread and recalcitrant to eradication, often causing recurrences after restoration. Yet, the ecological drivers of pink biofilm formation and the metabolic functions sustaining the growth of pigment-producing biodeteriogens remain unclear.

View Article and Find Full Text PDF

A tunable and reversible thermo-inducible bio-switch for streptomycetes.

Nucleic Acids Res

January 2025

College of Agronomy and Biotechnology, Southwest University, No.2, Tiansheng Road, Beibei District, Chongqing 400715, China.

Programmable control of bacterial gene expression holds great significance for both applied and academic research. This is particularly true for Streptomyces, a genus of Gram-positive bacteria and major producers of prodigious natural products. Despite that a few inducible regulatory systems have been developed for use in Streptomyces, there is an increasing pursuit to augment the toolkit of high-performance induction systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!