The convergence of marine sciences and medical studies has the potential for substantial advances in healthcare. This study uses bibliometric and topic modeling studies to map the progression of research themes from 2000 to 2023, with an emphasis on the interdisciplinary subject of marine and medical sciences. Building on the global publication output at the interface between marine and medical sciences and using the Hierarchical Dirichlet Process, we discovered dominating research topics during three periods, emphasizing shifts in research focus and development trends. Our data show a significant rise in publication output, indicating a growing interest in using marine bioresources for medical applications. The paper identifies two main areas of active research, "natural product biochemistry" and "trace substance and genetics", both with great therapeutic potential. We used social network analysis to map the collaborative networks and identify the prominent scholars and institutions driving this research and development progress. Our study indicates important paths for research policy and R&D management operating at the crossroads of healthcare innovation and marine sciences. It also underscores the significance of quantitative foresight methods and interdisciplinary teams in identifying and interpreting future scientific convergences and breakthroughs.

Download full-text PDF

Source
http://dx.doi.org/10.3390/md23010034DOI Listing

Publication Analysis

Top Keywords

marine medical
12
interface marine
8
marine sciences
8
medical sciences
8
publication output
8
marine
6
medical
5
investigating future
4
future trends
4
trends interface
4

Similar Publications

Aurovertins from a Marine-Derived Species and Nonenzymatic Reactions in Their Formation.

J Nat Prod

January 2025

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

Six new aurovertins (-) and a new citreoviridin derivative (), together with six known analogues (-), were isolated from the marine-derived sp. OUCMDZ-5930. Their structures were determined based on detailed spectroscopic analysis and ECD calculations.

View Article and Find Full Text PDF

Finnish North Karelia is a region with a rich cultural history of ethnomedicinal plant use, shaped by centuries of interactions among various ethnic groups. This study identified both similarities and divergences between local Finns, Karelians war refugees, and individuals of mixed origin compared to historical records. Based on 67 semi-structured interviews, we documented the use of 43 medicinal plant taxa from 25 families, of which 31 remain in use.

View Article and Find Full Text PDF

Background: Respiratory viral infections are a major public health challenge and the most diagnosed medical condition, particularly for individuals living in close proximity, like military personnel. We compared the sensitivity and specificity of the Biomeme Franklin and Truelab RT-PCR thermocyclers to determine which platform is more sensitive and specific at detecting SARS-CoV-2 and influenza A and B viruses.

Methodology: RNA extracted from nasopharyngeal swabs of infected and uninfected individuals was tested on the Biomeme Franklin at Lackland and the Truelab at Wright Patterson Air Force bases.

View Article and Find Full Text PDF

Rose Bengal antigen and smooth lipopolysaccharide (s-LPS) were produced from a field strain of ("homologous" antigens) and from the reference strain S99 ("heterologous" antigens); they are currently used for the diagnosis of brucellosis in cattle, water buffaloes, sheep, goats, and pigs, as recommended in the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (WOAH). "Homologous" and "heterologous" antigens were used in a rapid serum agglutination test (Rose Bengal test, RBT) and a competitive ELISA assay (c-ELISA) to test a panel of sera, blood, and other body fluids (cerebrospinal fluid, pericardial fluid, tracheal fluid, and aqueous humor) collected from 71 individuals belonging to five cetacean species (; ; ; ; and ), which were found stranded on the Italian coastline. Six animals were positive for spp.

View Article and Find Full Text PDF

Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine: A New Fluorescent Probe for the High-Sensitivity and Real-Time Visual Monitoring of Phosgene.

Sensors (Basel)

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!