Identification of Novel LCN2 Inhibitors Based on Construction of Pharmacophore Models and Screening of Marine Compound Libraries by Fragment Design.

Mar Drugs

The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China.

Published: January 2025

LCN2, a member of the lipocalin family, is associated with various tumors and inflammatory conditions. Despite the availability of known inhibitors, none have been approved for clinical use. In this study, marine compounds were screened for their ability to inhibit LCN2 using pharmacophore models. Six compounds were optimized for protein binding after being docked against the positive control Compound A. Two compounds showed promising results in ADMET screening. Molecular dynamics simulations were utilized to predict binding mechanisms, with Compound 69081_50 identified as a potential LCN2 inhibitor. MM-PBSA analysis revealed key amino acid residues that are involved in interactions, suggesting that Compound 69081_50 could be a candidate for drug development.

Download full-text PDF

Source
http://dx.doi.org/10.3390/md23010024DOI Listing

Publication Analysis

Top Keywords

pharmacophore models
8
compound 69081_50
8
identification novel
4
lcn2
4
novel lcn2
4
lcn2 inhibitors
4
inhibitors based
4
based construction
4
construction pharmacophore
4
models screening
4

Similar Publications

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.

View Article and Find Full Text PDF

PEPITEM is an immune-modulatory peptide that effectively regulates inflammation and mitigates immune-mediated inflammatory diseases (IMIDs). Here, we identify two independently active tripeptide pharmacophores within PEPITEM and engineered peptidomimetics with enhanced pharmacodynamic properties. These peptidomimetics regulate T-cell trafficking in vitro and reduce T-cell, neutrophil and macrophage numbers in the inflamed peritoneal cavity in vivo.

View Article and Find Full Text PDF

Design, Synthesis, and Biological Evaluation of Thieno[3,2-]pyrimidine Derivatives as the First Bifunctional PI3Kδ Isoform Selective/Bromodomain and Extra-Terminal Inhibitors.

J Med Chem

January 2025

College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.

The concomitant inhibition of PI3Kδ and bromodomain and extra-terminal (BET) that exerts a synergistic effect on the B-cell receptor signaling pathway provides a new strategy for the treatment of aggressive diffuse large B-cell lymphoma (DLBCL). Herein, a merged pharmacophore strategy was utilized to discover a series of thieno[3,2-]pyrimidine derivatives as the first-in-class bifunctional PI3Kδ-BET inhibitors. Through optimization, a highly potent compound () was identified to possess excellent and balanced activities against PI3Kδ [inhibitory concentration (IC) = 112 ± 8 nM] and BRD4-BD1 (IC = 19 ± 1 nM) and exhibited strong antiproliferative activities in DLBCL cells.

View Article and Find Full Text PDF

Identification of Novel LCN2 Inhibitors Based on Construction of Pharmacophore Models and Screening of Marine Compound Libraries by Fragment Design.

Mar Drugs

January 2025

The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China.

LCN2, a member of the lipocalin family, is associated with various tumors and inflammatory conditions. Despite the availability of known inhibitors, none have been approved for clinical use. In this study, marine compounds were screened for their ability to inhibit LCN2 using pharmacophore models.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease driven by diverse metabolic and inflammatory pathways. Farnesoid X receptor (FXR) is a promising target for MASH due to its role in bile acid and lipid metabolism, while HSD17B13 regulates liver lipid droplet homeostasis. However, the existing HSD17B13 inhibitors have several druglike property challenges due to the common phenolic structure, a key pharmacophore for the HSD17B13 inhibitor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!