Identification of Filovirus Entry Inhibitors from Marine Fungus-Derived Indole Alkaloids.

Mar Drugs

Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.

Published: January 2025

Filoviruses, mainly consisting of the two genera of and , are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection. Thus, it is suggested that marine indole alkaloids can be a valuable compound source for filovirus drug screening and development. Since marine indole alkaloids comprise a large diverse group of secondary metabolites, their biological properties would be helpful for pharmaceutical drug development to treat various filovirus infections.

Download full-text PDF

Source
http://dx.doi.org/10.3390/md23010023DOI Listing

Publication Analysis

Top Keywords

indole alkaloids
16
marine indole
12
identification filovirus
4
filovirus entry
4
entry inhibitors
4
marine
4
inhibitors marine
4
marine fungus-derived
4
indole
4
fungus-derived indole
4

Similar Publications

Anti-Neuroinflammatory Effects of Prenylated Indole Alkaloids from the Antarctic Fungus sp. Strain SF-7367.

Molecules

January 2025

Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.

Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value.

View Article and Find Full Text PDF

Identification of Filovirus Entry Inhibitors from Marine Fungus-Derived Indole Alkaloids.

Mar Drugs

January 2025

Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.

Filoviruses, mainly consisting of the two genera of and , are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection.

View Article and Find Full Text PDF

Five New Indole Alkaloid Derivatives from Deep-Sea Fungus AF1.

Mar Drugs

December 2024

School of Pharmaceutical Sciences, GBRCE for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.

One new gliotoxin derivative fumianthrogliotoxin (), one new indoquizoline alkaloid 3-(methyl propionate) indoquizoline (), and three novel indole alkaloids, anthroxyindole (), (±)-asperfumiindole A (), and (±)-asperfumiindole B (), together with 16 known compounds (-), were isolated from the culture of deep-sea derived fungus AF1. Their chemical structures and absolute configurations were determined through the analysis of NMR data in combination with electronic circular dichroism (ECD) calculations and other spectroscopic analyses. Compounds - and - were evaluated for anti-pulmonary fibrosis activity.

View Article and Find Full Text PDF

Objective: To investigate the predictive value of machine learning-based PET/CT radiomics and clinical risk factors in predicting interim efficacy in patients with follicular lymphoma (FL).

Methods: This study retrospectively analyzed data from 97 patients with FL diagnosed via histopathological examination between July 2012 and November 2023. Lesion segmentation was performed using LIFEx software, and radiomics features were extracted through the uAI Research Portal (uRP) platform, including first-order features, shape features, and texture features.

View Article and Find Full Text PDF

A 28-year-old woman was diagnosed with high-risk triple-expressor diffuse large B-cell lymphoma (DLBCL) (stage IV, IPI 4, CNS-IPI 5), with lymph node and extranodal involvement. The patient underwent first-line R-CHOP treatment, achieving a partial response with residual mediastinal uptake. A second-line platinum-based therapy with a transplant plan followed, resulting in stable disease; thus, she was considered refractory and started third-line therapy with CAR-T cells, receiving additional chemotherapy as bridging therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!