The aim of the present research is the isolation and morphological and molecular-phenological identification of nematophagous fungi of Southern Kazakhstan for the production of effective bionematicides on their basis. Nematophagous fungi, which include nematode-trapping, ovicidal, endoparasitic, toxin-producing, and special substance-producing fungi, are among the most effective biological agents in controlling phytoparasitic nematodes. To isolate and characterize nematophagous fungi, soil samples were collected at 12 sites in three regions of Southern Kazakhstan. The samples were collected using the envelope method. The content of nematophagous fungi in the samples was determined using the standard surface sowing technique. The obtained strains of nematophagous fungi were identified. The attractive and nematophagous activity of the obtained fungal strains was determined by using standard methods. In experiments on the isolation and morphological identification of nematophagous fungi, the nematode species was used. Identification of the strains was carried out by the method of determining the direct nucleotide sequence of the region of the nuclear ribosomal internal transcribed spacer, followed by determination of nucleotide identity with sequences deposited in the international GeneBank database. As a result, the following species of nematophagous fungi living in the soils of agricultural lands in Southern Kazakhstan were identified: , , , and .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/jof11010042 | DOI Listing |
J Fungi (Basel)
January 2025
Faculty of Biology and Biotechnology, Al-Fabari Kazakh National University, Almaty 050040, Kazakhstan.
The aim of the present research is the isolation and morphological and molecular-phenological identification of nematophagous fungi of Southern Kazakhstan for the production of effective bionematicides on their basis. Nematophagous fungi, which include nematode-trapping, ovicidal, endoparasitic, toxin-producing, and special substance-producing fungi, are among the most effective biological agents in controlling phytoparasitic nematodes. To isolate and characterize nematophagous fungi, soil samples were collected at 12 sites in three regions of Southern Kazakhstan.
View Article and Find Full Text PDFExp Parasitol
January 2025
Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia.
Biological control, which utilizes nematophagous fungi to reduce gastrointestinal nematode populations, may effectively diminish the need for chemical anthelmintic treatments. However, the limited knowledge surrounding the mass production of chlamydospores hinders the widespread use of biological products as alternatives to traditional anthelmintics. This study aimed to evaluate the development of liquid culture media for the large-scale production of the nematophagous fungi Duddingtonia flagrans using a systematic procedure, progressing from microplates to bioreactor.
View Article and Find Full Text PDFPathogens
November 2024
Laboratório de Parasitologia Experimental e Controle Biológico, Universidade Vila Velha, Rua São Joao, 48, Vila Velha 29101-420, ES, Brazil.
The filtrate of the nematophagous fungus produces silver nanoparticles (AgNPs) with nematicidal potential. However, there are currently no reports of its activity against eggs. The aim of this study was to investigate the potential ovicidal activity of AgNPs- on eggs.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
April 2025
Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
Infections with soil-transmitted helminths pose a significant threat to wildlife in enclosures, where transmission of these parasitic larvae is easier due to the limited space. Nematophagous fungi offer a promising solution as they can naturally control these nematodes. In this study, three nematophagous fungi (, , ) purchased from the non-profit global biological resource center ATCC were tested for their suitability as biological control agents.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock (INIFAP-AGRICULTURA), Jiutepec 62550, Mexico.
During the isolation, identification, and assessment of nematode-trapping fungi (NTF) against nematodes, we discovered an unusual fungus in decaying wood from Morelos State, Mexico. This isolate exhibited some characteristics similar to those of the genus; however, we found that it did not match any previously reported species within this genus after conducting morphological and phylogenetic analyses using the ITS, TEF, and RPB2 regions. This new species displays conidiophores with two or three stems emerging from the same initial site and conidiophores with only a single stem and aerial thickened hyphae from which single conidiophores emerge, forming 3D adhesive nets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!