Object detection in images is a fundamental component of many safety-critical systems, such as autonomous driving, video surveillance systems, and robotics. Adversarial patch attacks, being easily implemented in the real world, provide effective counteraction to object detection by state-of-the-art neural-based detectors. It poses a serious danger in various fields of activity. Existing defense methods against patch attacks are insufficiently effective, which underlines the need to develop new reliable solutions. In this manuscript, we propose a method which helps to increase the robustness of neural network systems to the input adversarial images. The proposed method consists of a Deep Convolutional Neural Network to reconstruct a benign image from the adversarial one; a Calculating Maximum Error block to highlight the mismatches between input and reconstructed images; a Localizing Anomalous Fragments block to extract the anomalous regions using the Isolation Forest algorithm from histograms of images' fragments; and a Clustering and Processing block to group and evaluate the extracted anomalous regions. The proposed method, based on anomaly localization, demonstrates high resistance to adversarial patch attacks while maintaining the high quality of object detection. The experimental results show that the proposed method is effective in defending against adversarial patch attacks. Using the YOLOv3 algorithm with the proposed defensive method for pedestrian detection in the INRIAPerson dataset under the adversarial attacks, the mAP50 metric reaches 80.97% compared to 46.79% without a defensive method. The results of the research demonstrate that the proposed method is promising for improvement of object detection systems security.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jimaging11010026DOI Listing

Publication Analysis

Top Keywords

patch attacks
20
adversarial patch
16
object detection
16
proposed method
16
anomaly localization
8
neural network
8
anomalous regions
8
defensive method
8
adversarial
7
method
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!