In grid intelligent inspection systems, automatic registration of infrared and visible light images in power scenes is a crucial research technology. Since there are obvious differences in key attributes between visible and infrared images, direct alignment is often difficult to achieve the expected results. To overcome the high difficulty of aligning infrared and visible light images, an image alignment method is proposed in this paper. First, we use the Sobel operator to extract the edge information of the image pair. Second, the feature points in the edges are recognised by a curvature scale space (CSS) corner detector. Third, the Histogram of Orientation Gradients (HOG) is extracted as the gradient distribution characteristics of the feature points, which are normalised with the Scale Invariant Feature Transform (SIFT) algorithm to form feature descriptors. Finally, initial matching and accurate matching are achieved by the improved fast approximate nearest-neighbour matching method and adaptive thresholding, respectively. Experiments show that this method can robustly match the feature points of image pairs under rotation, scale, and viewpoint differences, and achieves excellent matching results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/jimaging11010023 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.
View Article and Find Full Text PDFPharmaceutics
January 2025
Programa de Posgrado en Odontología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.
Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.
Polymers (Basel)
January 2025
School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Earth, Environment and Geospatial Sciences, Saint Louis University, Saint Louis, MO 63108, USA.
Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!