The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection.

J Imaging

Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria.

Published: December 2024

Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification. Despite these advancements, comprehensive reviews synthesizing recent findings remain scarce. By analyzing over 100 research papers over past half-decade (2019-2024), this review fills that gap, exploring the latest methods and paradigms, summarizing key concepts, challenges, datasets, and offering insights into future directions for brain tumor detection using deep learning. This review also incorporates an analysis of previous reviews and targets three main aspects: feature extraction, segmentation, and classification. The results revealed that research primarily focuses on Convolutional Neural Networks (CNNs) and their variants, with a strong emphasis on transfer learning using pre-trained models. Other methods, such as Generative Adversarial Networks (GANs) and Autoencoders, are used for feature extraction, while Recurrent Neural Networks (RNNs) are employed for time-sequence modeling. Some models integrate with Internet of Things (IoT) frameworks or federated learning for real-time diagnostics and privacy, often paired with optimization algorithms. However, the adoption of eXplainable AI (XAI) remains limited, despite its importance in building trust in medical diagnostics. Finally, this review outlines future opportunities, focusing on image quality, underexplored deep learning techniques, expanding datasets, and exploring deeper learning representations and model behavior such as recurrent expansion to advance medical imaging diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jimaging11010002DOI Listing

Publication Analysis

Top Keywords

deep learning
16
brain tumor
16
tumor detection
12
feature extraction
12
medical imaging
8
extraction segmentation
8
segmentation classification
8
neural networks
8
learning
7
neural frontier
4

Similar Publications

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

SEPO-FI: Deep-learning based software to calculate fusion index of muscle cells.

Comput Biol Med

January 2025

School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:

The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!