The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat. In this study, a comprehensive mathematical simulation model of a RED-ARS integration system was established, and an aqueous lithium bromide solution was selected as the working solution. Based on this model, the authors simulated and analyzed the impact of various factors on system performance, including the heat source temperature (90 °C to 130 °C), concentrated solution concentration (3 mol∙L⁻ to 9 mol∙L⁻), dilute solution concentration (0.002 mol∙L⁻ to 0.5 mol∙L⁻), condensing temperature of the dilute solution (50 °C to 70 °C), solution temperature (30 °C to 60 °C) and flow rate (0.4 cm∙s⁻ to 1.3 cm∙s⁻) in the RED stacks, as well as the number of RED stacks. The findings revealed the maximum output power of 934 W, a coefficient of performance (COP) of 0.75, and overall energy efficiency of 33%.

Download full-text PDF

Source
http://dx.doi.org/10.3390/membranes15010002DOI Listing

Publication Analysis

Top Keywords

integration system
12
waste heat
8
cooling capacity
8
red-ars integration
8
temperature °c
8
solution concentration
8
mol∙l⁻ mol∙l⁻
8
dilute solution
8
°c °c
8
red stacks
8

Similar Publications

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway.

Cell Rep

January 2025

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.

View Article and Find Full Text PDF

Globally, domestic refrigerators account for over 13% of the total energy consumption in residential buildings. The brazed plate water-cooled condenser (BPWCC) is compact in size and an attractive option to reduce the energy consumption of refrigerators using domestic water tanks. This study evaluated the performance of a household refrigerator with a secondary refrigerant calorimeter and BPWCC, using an appropriate experimental setup.

View Article and Find Full Text PDF

Pituitary adenomas: biology, nomenclature and clinical classification.

Rev Endocr Metab Disord

January 2025

Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

An 'adenoma' is a benign neoplasm composed of epithelial tissue, and has been standard nomenclature for primary pituitary neoplasms. In 2022, the fifth edition of the WHO Classification of Endocrine Tumours and of Central Nervous System Tumours, renamed pituitary adenomas as neuroendocrine tumours (NETs), assigning an oncology label to pituitary invariably benign neoplasms. Multidisciplinary workshops convened by the Pituitary Society have questioned the process, validity, and merit of this arbitrary change, while addressing the adverse clinical implications of the proposed new nomenclature.

View Article and Find Full Text PDF

Mental health is inherently multidimensional, requiring a holistic approach to intervention that integrates various aspects of an individual's well-being. Spirituality, a vital component of mental health, remains under addressed in Australian mental healthcare. Spiritual care practitioners may play a key role in addressing spiritual needs in mental healthcare; however, their roles and contributions in this context remain unexplored in the extant literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!