A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Published: January 2025

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.041-0.750 U/mL, with limits of detection and quantification of 0.012 and 0.041 U/mL, respectively. The device uses the urease in the sample to convert urea into ammonia, causing a colorimetric change in the bromothymol blue. The accuracy of the developed device was evaluated by comparing the measurements of several saliva samples (#13) obtained with the μPAD and with a commercially available kit. Stability studies were also performed to assess its functionality as a point-of-care methodology, and the device was stable for 4 months when stored in a vacuum. After the sample placement, it could be scanned within 40 min without providing significantly different results. The developed device quantifies urease activity in saliva within 30 min, providing a simple, portable, lab-free alternative to existing methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bios15010048DOI Listing

Publication Analysis

Top Keywords

urease activity
12
activity saliva
12
developed device
8
min providing
8
device
5
urease
5
saliva
5
microfluidic paper-based
4
paper-based device
4
device monitoring
4

Similar Publications

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

Microorganisms

January 2025

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH) over nitrate (NO) during litter decomposition. However, the impact of AMF's absorption of NH on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH on litter N metabolic characteristics by enriching NH via AMF suppression and nitrification inhibition in a subtropical forest.

View Article and Find Full Text PDF

Effects of green manuring on chemical characteristics and microecology of tobacco-growing soil in central henan.

BMC Microbiol

January 2025

College of Tobacco Science/Research Center for Tobacco Harm Reduction/Tobacco Cultivation Key Laboratory of China Tobacco, Henan Agricultural University, Zhengzhou, Henan, 450002, People's Republic of China.

Objective: This study explored green manuring effects on microecology, carbon/nitrogen levels, and enzyme activity in tobacco-growing soils.

Methods: After 30,000 kg·hm⁻² overpressure and 28 days of natural decomposition, plants (Hordeum vulgare L. (DM), Secale cereale L.

View Article and Find Full Text PDF

A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva.

Biosensors (Basel)

January 2025

CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients' saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!