The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning. While a few component-based efforts have been reported to predict the viscosity of bioinks, the impact of shear rate has been vastly ignored. To address this gap, our research presents predictive models using machine learning (ML) algorithms, including polynomial fit (PF), decision tree (DT), and random forest (RF), to estimate bioink viscosity based on component weights and shear rate. We utilized novel bioinks composed of varying percentages of alginate (2-5.25%), gelatin (2-5.25%), and TEMPO-Nano fibrillated cellulose (0.5-1%) at shear rates from 0.1 to 100 s. Our study analyzed 169 rheological measurements using 80% training and 20% validation data. The results, based on the coefficient of determination (R2) and mean absolute error (MAE), showed that the RF algorithm-based model performed best: [(R2, MAE) RF = (0.99, 0.09), (R2, MAE) PF = (0.95, 0.28), (R2, MAE) DT = (0.98, 0.13)]. These predictive models serve as valuable tools for bioink formulation optimization, allowing researchers to determine effective viscosities without extensive experimental trials to accelerate tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.3390/gels11010045DOI Listing

Publication Analysis

Top Keywords

extrusion-based bioprinting
8
tissue engineering
8
shear rate
8
predictive models
8
characterization machine
4
machine learning-driven
4
learning-driven property
4
property prediction
4
prediction novel
4
novel hybrid
4

Similar Publications

Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.

View Article and Find Full Text PDF

The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning.

View Article and Find Full Text PDF

Rheological Characterization and Printability of Sodium Alginate-Gelatin Hydrogel for 3D Cultures and Bioprinting.

Biomimetics (Basel)

January 2025

Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability.

View Article and Find Full Text PDF

Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability.

Biofabrication

January 2025

Mechanical Engineering, Tsinghua University, A421 Lee Shau Kee Building, Tsinghua Uniersity, Haidian District, Beijing, 100084, CHINA.

3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability.

View Article and Find Full Text PDF

Producing oral soft tissues using tissue engineering could compensate for the disadvantages of autologous grafts (limited availability and increased patient morbidity) and currently available substitutes (shrinkage). However, there is a lack of in vitro-engineered oral tissues due to the difficulty of obtaining stable pre-vessels that connect to the host and enable graft success. The main objective was to assess the connection of pre-vascularised 3D-bioprinted gingival substitutes to the host vasculature when subcutaneously implanted in immunodeficient mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!