The Effect of CaCl on the Gelling Properties of Pea Protein-Pectin Dispersions.

Gels

Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA.

Published: December 2024

The effects of CaCl addition before (PreCa) or after (PostCa) heating pea protein-pectin dispersions on the formed gel's rheological and microstructural properties were investigated. Isothermal titration calorimetry (ITC) revealed that CaCl bound both pea proteins and pectins through a spontaneous exothermic reaction and pectin exhibited a stronger binding affinity to CaCl. In PreCa gels, low levels of CaCl (5 and 10 mM) increased the gel elasticity (increase in the storage modulus, G') and their microstructural compactness. However, higher CaCl levels (15 and 25 mM) decreased gels' elasticity, likely due to diminished hydrogen bonds formed in the cooling stage, resulting in gels with larger voids and fewer interconnections between the protein and pectin phases. In PostCa gels, their elasticity increased with the CaCl content, a rheological change associated with the formation of denser microstructures. The addition of 25 mM CaCl decreased -sheet and increased -helix and random coil structures. Hydrogen bonding and electrostatic and hydrophobic interactions contributed to gel formation and stability in both PreCa and PostCa gels, whereas disulfide bonds had negligible effects. This study highlights the role of CaCl in modulating pea protein-pectin gels' properties and microstructures for the development of gel-like foods with diverse textures and mouthfeels.

Download full-text PDF

Source
http://dx.doi.org/10.3390/gels11010018DOI Listing

Publication Analysis

Top Keywords

pea protein-pectin
12
cacl
9
protein-pectin dispersions
8
preca postca
8
postca gels
8
cacl gelling
4
gelling properties
4
pea
4
properties pea
4
dispersions effects
4

Similar Publications

The Effect of CaCl on the Gelling Properties of Pea Protein-Pectin Dispersions.

Gels

December 2024

Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH 43210, USA.

The effects of CaCl addition before (PreCa) or after (PostCa) heating pea protein-pectin dispersions on the formed gel's rheological and microstructural properties were investigated. Isothermal titration calorimetry (ITC) revealed that CaCl bound both pea proteins and pectins through a spontaneous exothermic reaction and pectin exhibited a stronger binding affinity to CaCl. In PreCa gels, low levels of CaCl (5 and 10 mM) increased the gel elasticity (increase in the storage modulus, G') and their microstructural compactness.

View Article and Find Full Text PDF

Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers.

View Article and Find Full Text PDF

This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated.

View Article and Find Full Text PDF

Solidification of concentrated pea protein-pectin mixtures as potential binder.

J Sci Food Agric

June 2023

Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.

Background: Binders in plant-based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non-sticky, solid product. As an option for a clean-label binder possessing such properties, the solidification behavior of pea protein-pectin mixtures (250 g kg , r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof.

View Article and Find Full Text PDF

Pectin as a natural agent for reinforcement of pea protein gel.

Carbohydr Polym

December 2022

Departmrnt of Food Science and Technology, the Ohio State University, Columbus, OH, 43210, USA. Electronic address:

Pectin has been used as a gel strengthening agent, but its role in pea protein gels remains unclear. The present study investigated the effects of low-methyl pectin on the physicochemical and rheological properties of pea protein gels at neutral pH and elucidated underlying gelling mechanisms. Pectin increased the stability and viscosity of pea protein dispersions and induced the formation of large protein aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!