This paper presents a novel soft crawling robot controlled by gesture recognition, aimed at enhancing the operability and adaptability of soft robots through natural human-computer interactions. The Leap Motion sensor is employed to capture hand gesture data, and Unreal Engine is used for gesture recognition. Using the UE4Duino, gesture semantics are transmitted to an Arduino control system, enabling direct control over the robot's movements. For accurate and real-time gesture recognition, we propose a threshold-based method for static gestures and a backpropagation (BP) neural network model for dynamic gestures. In terms of design, the robot utilizes cost-effective thermoplastic polyurethane (TPU) film as the primary pneumatic actuator material. Through a positive and negative pressure switching circuit, the robot's actuators achieve controllable extension and contraction, allowing for basic movements such as linear motion and directional changes. Experimental results demonstrate that the robot can successfully perform diverse motions under gesture control, highlighting the potential of gesture-based interaction in soft robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biomimetics10010035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!