A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.

Download full-text PDF

Source
http://dx.doi.org/10.3390/e27010005DOI Listing

Publication Analysis

Top Keywords

kinetic theory
8
casimir invariant
8
phase space
8
theory casimir
4
casimir invariants-toward
4
invariants-toward understanding
4
understanding self-organization
4
self-organization topological
4
topological constraints
4
constraints topological
4

Similar Publications

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Sesamol is a significant lignan in sesame oil, which can be converted from sesamolin under acid-catalyzed conditions. The effects of several factors on the conversion of sesamolin to sesamol under acid-catalyzed conditions were investigated. The conversion kinetics were studied and the relevant conversion mechanism was revealed by density functional theory (DFT).

View Article and Find Full Text PDF

Dual active site and metal-substrate interface effect endow platinum-ruthenium/molybdenum carbide efficient pH-universal hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, PR China. Electronic address:

Exploring suitable dual active site and metal-substrate interface effect is essential for designing efficient and robust electrocatalysts across a wide pH range for the hydrogen evolution reaction (HER). Herein, alloyed platinum-ruthenium clusters supported on nanosheet-assembled molybdenum carbide microflowers (PtRu/MoC) are reported as efficient pH-universal electrocatalysts for HER. Due to dual active site and metal-substrate interface effect, the optimized PtRu/MoC electrocatalyst exhibits extremely low overpotentials (η) of 9, 19, and 33 mV to deliver 10 mA cm in 0.

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

A topological constraint, characterized by the Casimir invariant, imparts non-trivial structures in a complex system. We construct a kinetic theory in a constrained phase space (infinite-dimensional function space of macroscopic fields), and characterize a self-organized structure as a thermal equilibrium on a leaf of foliated phase space. By introducing a model of a grand canonical ensemble, the Casimir invariant is interpreted as the number of topological particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!