Rotenone, a naturally occurring compound derived from the roots of tropical plants, is used as a broad-spectrum insecticide, piscicide, and pesticide. It is a classical, high-affinity mitochondrial complex I inhibitor that causes not only oxidative stress, α-synuclein phosphorylation, DJ-1 (Parkinson's disease protein 7) modifications, and inhibition of the ubiquitin-proteasome system but it is also widely considered an environmental contributor to Parkinson's disease (PD). While prodromal symptoms, such as loss of smell, constipation, sleep disorder, anxiety/depression, and the loss of dopaminergic neurons in the substantia nigra of rotenone-treated animals, have been reported, alterations of metabolic hormones and hyperinsulinemia remain largely unknown and need to be investigated. Whether rotenone and its effect on metabolic peptides could be utilized as a biomarker for its toxic metabolic effects, which can cause long-term detrimental effects and ultimately lead to obesity, hyperinsulinemia, inflammation, and possibly gut-brain axis dysfunction, remains unclear. Here, we show that rotenone disrupts metabolic homeostasis, altering hormonal peptides and promoting infiltration of inflammatory T cells. Specifically, our results indicate a significant decrease in glucagon-like peptide-1 (GLP-1), C-peptide, and amylin. Interestingly, levels of several hormonal peptides related to hyperinsulinemia, such as insulin, leptin, pancreatic peptide (PP), peptide YY (PYY), and gastric inhibitory polypeptide (GIP), were significantly upregulated. Administration of rotenone to rats also increased body weight and activated macrophages and inflammatory T cells. These data strongly suggest that rotenone disrupts metabolic homeostasis, leading to obesity and hyperinsulinemia. The potential implications of these findings are vast, given that monitoring these markers in the blood could not only provide a crucial tool for assessing the extent of exposure and its relevance to obesity and inflammation but could also open new avenues for future research and potential therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14020124DOI Listing

Publication Analysis

Top Keywords

metabolic peptides
8
hyperinsulinemia inflammation
8
rotenone rats
8
parkinson's disease
8
obesity hyperinsulinemia
8
rotenone disrupts
8
disrupts metabolic
8
metabolic homeostasis
8
hormonal peptides
8
inflammatory cells
8

Similar Publications

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI.

J Pharmacokinet Pharmacodyn

January 2025

Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.

Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].

View Article and Find Full Text PDF

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!