Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mRNA, and PGE2 were significantly increased in DKO-Hom mice compared to wild-type (WT) mice. The EP2 and EP4 receptors were mainly expressed in CD68 macrophages and were significantly increased in the muscle tissues of both dystrophin (mdx) and DKO-Hom mice compared to WT mice. Osteogenic and osteoclastogenic gene expression in skeletal muscle also increased in DKO-Hom mice, which correlates with severe muscle heterotopic ossification (HO). Treatment of DKO-Hom mice with the EP2 antagonist PF04418948 for 2 weeks increased body weight and reduced HO and muscle pathology by decreasing both total macrophages (CD68) and senescent macrophages (CD68P21), while increasing endothelial cells (CD31). PF04418948 also increased bone volume/total volume (BV/TV), the trabecular thickness (Tb.Th) of the tibia trabecular bone, and the cortical bone thickness of both the femur and tibia without affecting spine trabecular bone microarchitecture. In summary, our results indicate that targeting EP2 improves muscle pathology and improves bone mass in DKO mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14020116 | DOI Listing |
Cells
January 2025
Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.
View Article and Find Full Text PDFAm J Transl Res
September 2020
Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston Houston, TX, USA.
This study investigated the role of muscle damage in bone defect healing using skull and tibial double-defect and tibial fracture models in dystrophin/Utrophin double-knockout (dKO-Hom) mice. The skull and tibia bone defect and fracture healing was monitored using micro-CT, histology, immuohistochemistry and quantitative PCR. We found the skull defect healing is not impaired while the tibial defect healing was delayed at day 7 in the dKO-Hom group compared to wild-type (WT) group as revealed by micro-CT.
View Article and Find Full Text PDFHum Mol Genet
May 2019
Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
The dystrophin-/-/utrophin-/-/ double knockout (dKO-Hom) mouse is a murine model of human Duchenne muscular dystrophy. This study investigated the bone and muscle abnormalities of dKO-Hom mouse and mechanisms. We collected bone and skeletal muscle samples from control mice and three muscular dystrophic mouse models at different ages and performed micro-computer tomography and histological analyses of both bone and skeletal muscle tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!