Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation leading to joint damage and systemic complications. Angiogenesis promotes inflammation and contributes to RA progression. This study evaluated potential anti-angiogenic effects of several compounds including small-molecule kinase inhibitors, such as sunitinib (pan-kinase inhibitor), tofacitinib (JAK-inhibitor), NIKi (NF-κB-inducing kinase inhibitor), and the integrin-targeting peptide fluciclatide, using a scratch assay and 3D spheroid-based models of angiogenesis. For all drugs tested in the low micromolar range (1-25 μM), sunitinib (as positive anti-angiogenetic control) showed marked inhibition of endothelial cell (EC) migration and sprouting, effectively reducing both scratch closure and sprout formation. Tofacitinib exhibited marginal effectiveness in the scratch assay, but performed better in the 3D models (55% inhibition), whereas NIKi showed around 50% anti-angiogenic effects in both models. Fluciclatide changed EC morphology rather than migration, and only when stimulated with synovial fluid in spheroid model did it show inhibitory effects (at ≥2.5 µM), with none below this dosage. These results highlight the potential of NIKi and tofacitinib for angiogenesis inhibition and of fluciclatide for safe diagnostic targeting of microdose in RA, as well as the need for advanced screening models that mimic RA's complex inflammatory pro-angiogenic environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14020102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!