Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g., acquired by random mutations, cancer cells typically escape from certain treatments ("acquired resistance") by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14020065DOI Listing

Publication Analysis

Top Keywords

cell death
20
death pathways
12
trim25
7
cell
5
death
5
trim25 global
4
global player
4
player cell
4
pathways promising
4
promising target
4

Similar Publications

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.

View Article and Find Full Text PDF

Background: Non-Hodgkin lymphoma (NHL) is the seventh most common cancer among Asian, Native Hawaiian and Pacific Islanders (ANHPIs), yet the risk of death in specific ANHPI subgroups in the US is unknown.

Methods: We used Surveillance, Epidemiology, and End Results data to investigate relative survival and the risk of death among NHL patients in ANHPI subgroups. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals (CI), comparing ANHPI subgroups to non-Hispanic White (NHW) NHL patients for all-cause death and NHL-specific death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!