Non-Rigid Cycle Consistent Bidirectional Network with Transformer for Unsupervised Deformable Functional Magnetic Resonance Imaging Registration.

Brain Sci

Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

Published: January 2025

Background: In neuroscience research about functional magnetic resonance imaging (fMRI), accurate inter-subject image registration is the basis for effective statistical analysis. Traditional fMRI registration methods are usually based on high-resolution structural MRI with clear anatomical structure features. However, this registration method based on structural information cannot achieve accurate functional consistency between subjects since the functional regions do not necessarily correspond to anatomical structures. In recent years, fMRI registration methods based on functional information have emerged, which usually ignore the importance of structural MRI information.

Methods: In this study, we proposed a non-rigid cycle consistent bidirectional network with Transformer for unsupervised deformable functional MRI registration. The work achieves fMRI registration through structural MRI registration, and functional information is introduced to improve registration performance. Specifically, we employ a bidirectional registration network that implements forward and reverse registration between image pairs and apply Transformer in the registration network to establish remote spatial mapping between image voxels. Functional and structural information are integrated by introducing the local functional connectivity pattern, the local functional connectivity features of the whole brain are extracted as functional information. The proposed registration method was experimented on real fMRI datasets, and qualitative and quantitative evaluations of the quality of the registration method were implemented on the test dataset using relevant evaluation metrics. We implemented group ICA analysis in brain functional networks after registration. Functional consistency was evaluated on the resulting t-maps.

Results: Compared with non-learning-based methods (Affine, Syn) and learning-based methods (Transmorph-tiny, Cyclemorph, VoxelMorph x2), our method improves the peak t-value of t-maps on DMN, VN, CEN, and SMN to 18.7, 16.5, 16.6, and 17.3 and the mean number of suprathreshold voxels ( < 0.05, t > 5.01) on the four networks to 2596.25, and there is an average improvement in peak t-value of 23.79%, 12.74%, 12.27%, 7.32%, and 5.43%.

Conclusions: The experimental results show that the registration method of this study improves the structural and functional consistency between fMRI with superior registration performance.

Download full-text PDF

Source
http://dx.doi.org/10.3390/brainsci15010046DOI Listing

Publication Analysis

Top Keywords

registration
17
registration method
16
functional
14
fmri registration
12
structural mri
12
functional consistency
12
non-rigid cycle
8
cycle consistent
8
consistent bidirectional
8
bidirectional network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!