Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated. Thus, we compared the effect of E46K α-syn with other types to identify the mechanisms underlying neurite outgrowth.

Methods: We transfected SK-N-SH cells with WT and mutant (A53T and E46K) α-syn to investigate the effects of their overexpression on neurite outgrowth. Then, we compared the differential effects of α-syn on neurite outgrowth using microscopic analysis, including confocal microscopy. We also analyzed the differential regulation of cell division control 42 effector protein 2 (Cdc42EP2) using real-time quantitative polymerase chain reaction and western blot analysis. Finally, to confirm the implication of neurite outgrowth, we knocked down Cdc42EP2 using small interfering RNA.

Results: Unlike WT and A53T α-syn, E46K α-syn failed to promote neurite outgrowth by not inducing Cdc42EP2 and subsequent βIII-tubulin expression. Cdc42EP2 knockdown impaired neurite outgrowth in WT and A53T α-syn transfectants.

Conclusions: Our findings suggest that WT and mutant α-syn are linked to Cdc42EP2 production in neuritogenesis, implying α-syn involvement in the physiological function of axon growth and synapse formation. Thus, α-syn may be a potential therapeutic target for PD.

Download full-text PDF

Source
http://dx.doi.org/10.3390/brainsci15010009DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
28
α-syn
14
e46k α-syn
12
neurite
8
promote neurite
8
outgrowth inducing
8
inducing cdc42ep2
8
sk-n-sh cells
8
a53t α-syn
8
outgrowth
7

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Transcriptomic Signatures of Cold Acclimated Adipocytes Reveal CXCL12 as a Brown Autocrine and Paracrine Chemokine.

Mol Metab

January 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!