Due to the labor-intensive manual annotations for nuclei segmentation, point-supervised segmentation based on nuclei coordinate supervision has gained recognition in recent years. Despite great progress, two challenges hinder the performance of weakly supervised nuclei segmentation methods: (1) The stable and effective segmentation of adjacent cell nuclei remains an unresolved challenge. (2) Existing approaches rely solely on initial pseudo-labels generated from point annotations for training, and inaccurate labels may lead the model to assimilate a considerable amount of noise information, thereby diminishing performance. To address these issues, we propose a method based on center-point prediction and pseudo-label updating for precise nuclei segmentation. First, we devise a Gaussian kernel mechanism that employs multi-scale Gaussian masks for multi-branch center-point prediction. The generated center points are utilized by the segmentation module to facilitate the effective separation of adjacent nuclei. Next, we introduce a point-guided attention mechanism that concentrates the segmentation module's attention around authentic point labels, reducing the noise impact caused by pseudo-labels. Finally, a label updating mechanism based on the exponential moving average (EMA) and k-means clustering is introduced to enhance the quality of pseudo-labels. The experimental results on three public datasets demonstrate that our approach has achieved state-of-the-art performance across multiple metrics. This method can significantly reduce annotation costs and reliance on clinical experts, facilitating large-scale dataset training and promoting the adoption of automated analysis in clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/bioengineering12010085 | DOI Listing |
STAR Protoc
January 2025
Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA. Electronic address:
Microscopic cell segmentation typically requires complex imaging, staining, and computational steps to achieve acceptable consistency. Here, we describe a protocol for the high-fidelity segmentation of the nucleus and cytoplasm in cell culture and apply it to monitor interferon-induced signal transducer and activator of transcription (STAT) signaling. We provide guidelines for sample preparation, image acquisition, and segmentation.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Viruses
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France.
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!