This study compares the heat generated during bone drilling using different protocols and implant systems, first in vitro and then in vivo with an animal model. In the experimental phase, thermal data were collected using an infrared camera while preparing implant beds in bone similes. The heat generated by a one-drill protocol with a new-generation drill bit and the Straumann BLT sequential drilling protocol was evaluated. The experimental study was then replicated in an animal model to assess the impact of these protocols on early osseointegration, measured by bone-to-implant contact (BIC) at three weeks post-surgery for Straumann BLT SLActive and Medentika Quattrocone implants. The results showed the BLT sequential protocol generated significantly more heat during drilling in bone similes compared to the new-generation drill bit. In the animal model, a histological analysis revealed a trend favoring shorter drilling protocols, with reduced drilling times and a potential advantage for osseointegration, though the BIC differences were not statistically significant. These findings suggest that minimizing the number of drilling steps and thermal stress may enhance osseointegration more effectively than advanced implant surface treatments. This aligns with emerging views on the importance of optimized drilling protocols and designs to reduce heat generation and better preserve surrounding bone structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/bioengineering12010051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!