Cells Grouping Detection and Confusing Labels Correction on Cervical Pathology Images.

Bioengineering (Basel)

Software College, Northeastern University, Shenyang 110819, China.

Published: December 2024

Cervical cancer is one of the most prevalent cancers among women, posing a significant threat to their health. Early screening can detect cervical precancerous lesions in a timely manner, thereby enabling the prevention or treatment of the disease. The use of pathological image analysis technology to automatically interpret cells in pathological slices is a hot topic in digital medicine research, as it can reduce the substantial effort required from pathologists to identify cells and can improve diagnostic efficiency and accuracy. Therefore, we propose a cervical cell detection network based on collecting prior knowledge and correcting confusing labels, called PGCC-Net. Specifically, we utilize clinical prior knowledge to break down the detection task into multiple sub-tasks for cell grouping detection, aiming to more effectively learn the specific structure of cells. Subsequently, we merge region proposals from grouping detection to achieve refined detection. In addition, according to the Bethesda system, clinical definitions among various categories of abnormal cervical cells are complex, and their boundaries are ambiguous. Differences in assessment criteria among pathologists result in ambiguously labeled cells, which poses a significant challenge for deep learning networks. To address this issue, we perform a labels correction module with feature similarity by constructing feature centers for typical cells in each category. Then, cells that are easily confused are mapped with these feature centers in order to update cells' annotations. Accurate cell labeling greatly aids the classification head of the detection network. We conducted experimental validation on a public dataset of 7410 images and a private dataset of 13,526 images. The results indicate that our model outperforms the state-of-the-art cervical cell detection methods.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering12010023DOI Listing

Publication Analysis

Top Keywords

grouping detection
12
cells
8
detection
8
confusing labels
8
labels correction
8
cervical cell
8
cell detection
8
detection network
8
prior knowledge
8
feature centers
8

Similar Publications

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Comput Biol Med

January 2025

Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:

- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.

View Article and Find Full Text PDF

Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.

View Article and Find Full Text PDF

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

Depression symptom severity and behavioral impairment in school-going adolescents in Uganda.

BMC Psychiatry

January 2025

Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.

Background: During adolescence, a critical developmental phase, cognitive, psychological, and social states interact with the environment to influence behaviors like decision-making and social interactions. Depressive symptoms are more prevalent in adolescents than in other age groups which may affect socio-emotional and behavioral development including academic achievement. Here, we determined the association between depression symptom severity and behavioral impairment among adolescents enrolled in secondary schools of Eastern and Central Uganda.

View Article and Find Full Text PDF

The association between Chlamydia pneumoniae infection and prognosis in lung cancer patients: a prospective study.

BMC Infect Dis

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.

Background: The prognostic value of Chlamydia pneumoniae (Cpn) infection in postoperative lung cancer patients remains unclear. This study aimed to evaluate the association between Cpn infection and survival in lung cancer patients.

Methods: This study included 309 newly diagnosed primary lung cancer patients from three hospitals in Fuzhou, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!