In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer. Simulations in 3D patient-specific models for thyroid and oropharyngeal cancers assessed the transducer's proficiency. The transducer consisting of 256 elements randomly positioned on a spherical shell, operated at a frequency of 1 MHz with various phasing schemes and power modulations to analyze 40, 41, and 43 °C isothermal volumes and the penetration depth of the heating volume, along with temperature uniformity within the target area using T10, T50, and T90 temperatures, across different tumor models. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. The results indicated the array's ability to produce controlled heating volumes from 1 to 48 cm at 40 °C, 0.35 to 27 cm at 41 °C, and 0.1 to 8 cm at 43 °C. The heating depths ranged from 7 to 39 mm minimum and 52 to 59 mm maximum, measured from the skin's inner surface. The transducer, with optimal phasing and water-cooled bolus, confined the heating to the targeted regions effectively. Multifocal sonications also improved the heating homogeneity, reducing the length-to-diameter ratio by 38% when using eight foci versus a single one. This approach shows potential for treating a range of tumors, notably deep-seated and challenging oropharyngeal cancers.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering12010014DOI Listing

Publication Analysis

Top Keywords

head neck
8
neck cancer
8
patient-specific models
8
ultrasound spherical
8
spherical random
8
random phased
8
phased array
8
array transducer
8
oropharyngeal cancers
8
hyperthermia
5

Similar Publications

Nasal septal perforations (NSPs) are a common referral to specialist rhinology practice. A wide range of management options have been described but to be able to offer the most effective treatment modalities to our patients we must be able to capture quantitative data on patient symptom burden accurately and robustly.

View Article and Find Full Text PDF

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.

View Article and Find Full Text PDF

Biological therapy in Chronic rhinosinusitis with nasal polyps.

Expert Rev Clin Immunol

January 2025

Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.

Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease. High proportions of patients with CRSwNP characterized by type 2 inflammation fail to gain adequate control with conventional medical and surgical approaches. The application of biologics in clinical practice and assessments of novel biologics in clinical trials are blooming in expectations to fulfill the unmet medical needs of patients with CRSwNP with type 2 inflammation.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!