Neutralizing antibody titers have been shown to correlate with immune protection against COVID-19 and can be used to estimate vaccine effectiveness. Numerous studies have explored the relationship between neutralizing antibodies and protection. However, there remains a lack of quantitative data directly assessing the minimum effective protective neutralizing antibody titer in . In this study, we utilized eight cohorts of participants with diverse immune backgrounds for evaluation of protective antibody response. To precisely assess the lower threshold of neutralizing antibody titers required for effective protection against SARS-CoV-2 infections, we employed plasma adoptive transfer from different cohorts into mice. This study demonstrated that neutralizing titers in the plasma of recipient mice correlated well with those in human donors, and a positive linear correlation was observed between the human and mouse recipients of transferred plasma neutralizing titer. A pseudotyped virus neutralizing titers greater than 7 was identified as the minimum threshold necessary to reduce viral titers in infected mice, establishing a crucial baseline for effective protection. Furthermore, despite the variability in immune backgrounds, these diverse cohorts' plasma exhibited a similar neutralizing antibody threshold necessary for protection. This finding has significant implications for vaccine design and the assessment of immune competence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/22221751.2025.2459140 | DOI Listing |
Viruses
January 2025
Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil.
Domestic animals can share viral pathogens with humans, acting mainly as a bridge host. The genus hosts important zoonotic species that have emerged in urban areas worldwide. Nevertheless, the role of companion animals, such as dogs and cats, in the circulation of orthopoxviruses in urban areas remains poorly understood.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
School of Public Health, Bengbu Medical University, Bengbu 233030, China.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.
View Article and Find Full Text PDFJapanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!