Alzheimer's disease, a progressively degenerative neurological disorder, is the most common cause of dementia in the elderly. While its precise etiology remains unclear, researchers have identified diverse pathological characteristics and molecular pathways associated with its progression. Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease. These non-coding RNAs regulate several biological processes critical to the advancement of the disease, offering promising potential as therapeutic targets and diagnostic biomarkers. Therefore, this review aims to investigate the underlying mechanisms of Alzheimer's disease onset, with a particular focus on microRNAs, long non-coding RNAs, and circular RNAs associated with the disease. The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs. It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease, as well as how these non-coding RNAs influence the disease's progression by regulating gene expression and protein functions. For example, miR-9 targets the UBE4B gene, promoting autophagy-mediated degradation of Tau protein, thereby reducing Tau accumulation and delaying Alzheimer's disease progression. Conversely, the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA, promoting the generation of amyloid-² and accelerating Alzheimer's disease development. Additionally, circular RNAs play significant roles in regulating neuroinflammatory responses. By integrating insights from these regulatory mechanisms, there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease. This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs, potentially paving the way for early detection and novel treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/NRR.NRR-D-24-00696 | DOI Listing |
Sleep
January 2025
Complete HEOR Solutions (CHEORS), Chalfont, PA, USA.
Study Objectives: This study assessed the utilization of potentially inappropriate medications (PIM) including oral sedative-hypnotic and atypical antipsychotic (OSHAA), healthcare resource utilization (HCRU), and costs among elderly individuals with insomnia and in the subpopulation with Alzheimer's Disease (AD) who also had a diagnosis of insomnia.
Methods: Using claims database containing International Classification of Diseases, 10th Revision (ICD-10) codes, the cohort included individuals aged ≥ 65 with incident insomnia (EI, N=152,969) and AD insomnia subpopulation (ADI, N=4,888). Proportion of patients utilizing atypical antipsychotics or oral sedative-hypnotic medications, namely z-drugs, benzodiazepines, doxepin, Dual Orexin Receptor Antagonists (DORAs), and melatonin agonists, were assessed.
Anal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFAge Ageing
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: A mobile cognition scale for community screening in cognitive impairment with rigorous validation is in paucity. We aimed to develop a digital scale that overcame low education for community screening for mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD.
Methods: A mobile cognitive self-assessment scale (CogSAS) was designed through the Delphi process, which is feasible for the older population with low education.
STAR Protoc
January 2025
CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Electronic address:
Mammalian Dicer has been proved to be functional on double-stranded RNAs (dsRNAs) and involved in antiviral immunity or immune regulation. Here, we present a protocol for identifying Dicer as a dsRNA binding and cleaving factor to transfected dsRNA in cell lines, based on small RNA sequencing (RNA-seq) and dsRNA-immunoprecipitation (dsRNA-IP). We detail both experimental processes and analysis on small RNA-seq data.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!