Backgrounds: Ultraviolet (UV) radiation-induced photoaging is a multifaceted biological process. Fruit acids have shown promise in combating photoaging. This study aims to investigate the mechanisms underlying the protective effects of fruit acids on UV-induced skin photoaging.

Methods: Initially, we induced skin photoaging in rats through UV irradiation. Subsequently, the model group received glycolic acid treatment. The reparative effects of glycolic acid on skin tissue morphology and structure were assessed using Hematoxylin-eosin (HE) staining. The influence of glycolic acid on oxidative stress indicators (Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-Px), Malondialdehyde (MDA), Catalase (CAT)) and levels of cellular inflammatory factors (Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), IL-1β, Interferon-gamma (IFN-γ)) in photoaged skin was evaluated via Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, alterations in collagen expression and levels of proteins associated with the Phosphoinositide 3-kinase/Protein Kinase B (PI3K/Akt) and Nuclear Factor kappa B (NF-κB) signaling pathways were determined through Western blot analysis.

Results: Compared to the model group, the fruit group exhibited a decrease in the thickness of the skin epidermal keratinization layer, an increase in dermal thickness, and more vigorous cortical secretion. Moreover, compared with the model group, the fruit group showed significant increases in SOD activity, CAT, GSH-Px, Collagen I, Collagen III, Collagen VII, and elastin. Conversely, levels of MDA, IL-6, IL-1β, IFN-γ, and TNF-α were lower in the fruit acid group than in the model group. Additionally, fruit acid treatment inhibited the phosphorylation levels of PI3K, Akt, and p65 induced by UV.

Conclusion: Fruit acid demonstrates the ability to diminish the oxidative stress and inflammatory responses in skin photoaging rat models, thereby facilitating collagen recovery and ameliorating symptoms of skin photoaging. Its potential mechanism may entail the inhibition of the activation of the PI3K/Akt and NF-κB signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.24976/Discov.Med.202537192.16DOI Listing

Publication Analysis

Top Keywords

fruit acid
16
model group
16
skin photoaging
12
glycolic acid
12
fruit
8
skin
8
uv-induced skin
8
pi3k/akt nf-κb
8
fruit acids
8
acid treatment
8

Similar Publications

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Lyophilized and Oven-Dried Extracts: Characterization and , , and Analyses.

Plants (Basel)

January 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.

In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.

View Article and Find Full Text PDF

Freeze-drying fresh vegetables and fruits may not only prevent post-harvest losses but also provide a concentrated source of nutrients and phytochemicals. This study focused on the phenolic composition of different freeze-dried products derived from horticultural crop remains (HCRs) in the vegetable and fruit production chain. These products may be considered as a potential health-promoting solution for preventing post-harvest fruit spoiling and losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!