Background: Our group and others have recently identified four molecular groups of meningioma, with unique underlying biology and outcomes. The relevance of group-specific metabolite profiles (particularly among hypermetabolic tumours), has not been explored.

Methods: We performed untargeted metabolic profiling of meningiomas representing each molecular group and WHO grade. Prognostic biochemicals were identified using Cox regression and their biological importance was explored using RNA and protein-based pathway analyses. Validation was performed using targeted high performance liquid chromatography-mass spectrometry (HPLC-MS/MS).

Results: Global metabolic profiling identified 560 unique biochemicals. We identified a 21-metabolite outcome signatures which is strongly predictive of outcome after adjusting for WHO grade, extent of resection, and receipt of adjuvant radiotherapy (HR 326.49, 95%CI 16.72-6375.48, p < 0.0001). The abundance of N6-trimethyllysine was associated with earlier time to recurrence on our whole cohort (log-rank p = 0.009) and within hypermetabolic and WHO grade 2 tumours specifically; this was validated using targeted HPLC-MS/MS on two cohorts. Consensus RNA and protein expression analysis demonstrated as association between N6-trimethyllysine abundance and activation of oxidative phosphorylation pathways, which portended worse outcomes in the hypermetabolic subgroup but, interestingly, better outcomes in the proliferative subgroup. By contrast, upregulated pyruvate and lactate transporters were associated with worse outcomes in proliferative meningiomas specifically.

Conclusions: This is the first study to demonstrate a subgroup-specific prognostic role of N6-trimethyllysine in hypermetabolic meningiomas, offering increasingly granular outcome predictions using a widely accessible technique (HPLC-MS/MS). We also suggest fundamental differences in preferred energy utilization between and a potential need for subgroup-specific therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuonc/noae281DOI Listing

Publication Analysis

Top Keywords

metabolic profiling
12
biochemicals identified
8
worse outcomes
8
outcomes proliferative
8
profiling meningioma
4
meningioma reveals
4
reveals novel
4
novel subgroup-specific
4
subgroup-specific biologic
4
biologic insights
4

Similar Publications

Setting standards for brain collection procedures in metabolomic studies.

J Cereb Blood Flow Metab

January 2025

Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Current metabolomics technologies can measure hundreds of chemical entities in tissue extracts with good reliability. However, long-recognized requirements to halt enzyme activities during the initial moments of sample preparation are usually overlooked, allowing marked postmortem shifts in levels of labile metabolites representing diverse pathways. In brain many such changes occur in a matter of seconds.

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!