Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes. The inhibitory effects of specific antagonists or small interfering (si)RNAs on DR subtypes were compared by analyzing morphological changes of cells, expression patterns of pluripotency markers, cell growth inhibitory activities and cell invasion. L-741,626, a specific DRD2 antagonist, induced morphological changes in PC-3-derived CSC-like cells, suppressed the expression of Oct4 (a pluripotency marker), and inhibited the growth of cells and tumors. The proliferation of heterozygous null PC-3 cells, generated using the CRISPR/Cas9 method, was slow, and their sphere-forming ability was substantially reduced, indicating a diminished capacity to produce CSCs. In addition, the phosphorylation of AMPK was suppressed by DRD2 siRNA and the heterozygous knockout of DRD2 in PC-3 cells, indicating that AMPK may be a putative downstream signaling molecule involved in the production and maintenance of PC-3-derived CSC-like cells. Specific inhibition or suppression of DRD2 caused PC-3-derived CSC-like cells to lose their properties and inhibited the formation of PC-3-derived CSC-like cells, followed by inhibition of the phosphorylation of AMPK, which is considered a putative downstream signaling molecule of DRD2. Further understanding of the mechanisms by which DRD2 regulates AMPK and the effects of AMPK inhibition on the properties of PC-3-derived CSC-like cells may provide valuable insights into the identification of molecular targets for treating intractable prostate cancer wherein AMPK is constitutively activated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755227 | PMC |
http://dx.doi.org/10.3892/ol.2025.14888 | DOI Listing |
Oncol Lett
March 2025
College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Mutations in the KRAS oncogene can mediate resistance to radiation. KRAS mutation (mut) driven tumors have been reported to express cancer stem cell (CSC)-like features and may harbor metabolic liabilities through which CSC-associated radioresistance can be overcome. We established a radiation/drug screening approach that relies on the growth of 3D spheres under anchorage-independent and lipid-limiting culture conditions, which promote stemness and lipogenesis.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Amadeolab Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy.
Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
Background: Cancer stem cells (CSCs) constitute a small and elusive subpopulation of cancer cells within a tumor mass and are characterized by stem cell properties. Reprogrammed CSCs exhibit similar capability to initiate tumor growth, metastasis, and chemo- and radio-resistance and have similar gene profiles to primary CSCs. However, the efficiency of cancer cell reprogramming remained relatively low.
View Article and Find Full Text PDFPhytomedicine
January 2025
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:
Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.
Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!