Background: Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes. (CM), a fungus with various biological activities, including antioxidant properties is examined both and to assess its effectiveness in mitigating PA-induced hepatocyte apoptosis and preventing FLD progression.
Purpose: This study aims to investigate the potential and mechanism of CM in combating FLD, particularly in inhibiting hepatocyte apoptosis.
Methods: studies utilized Clone9 hepatocytes treated with PA to simulate FLD conditions. The effects of CM ethyl acetate extract (EAECM) on apoptosis, mitochondrial function, ER stress, inflammation, and oxidative stress were evaluated. experiments involved FVB mice fed a NASH diet containing high levels of PA to induce FLD, with powdered CM administered orally to assess its impact on body weight, fasting blood glucose level, liver health, fibrosis, and markers of ER stress, inflammation, and oxidative stress.
Results: EAECM demonstrated protective effects against PA-induced apoptosis, mitochondrial dysfunction, ER stress, inflammation, and oxidative stress . , powdered CM supplementation attenuated body weight gain, improved fasting blood glucose level, prevented hepatomegaly, reduced serum triglycerides, and inhibited liver fibrosis. Furthermore, powdered CM treatment mitigated ER stress, inflammation, and oxidative stress in the liver of mice receiving a NASH diet.
Conclusion: holds promise as a therapeutic agent for FLD, as evidenced by its ability to alleviate PA-induced hepatocytes damage and hinder FLD progression in mice. Further research is warranted to identify the active compounds responsible for its beneficial effects and to explore its potential clinical applications in treating FLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755097 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1438997 | DOI Listing |
Stroke
January 2025
Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).
Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFJ Tradit Complement Med
November 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. , a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background: Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!