Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells. Moreover, compounds 3a, 3b, 6g, 8a and 10c were assessed for their VEGFR-2 inhibitory activity. Results proved that compound 10c exhibited outstanding VEGFR-2 inhibition (IC = 0.104 μM) compared to sunitinib. Compound 10c paused the G0-G1 phase of the cell cycle in HCT-116 and MCF-7 cells and the S phase in HeLa cells. Additionally, compound 10c elevated caspase-3/9 levels in HCT-116 and HeLa cells, leading to cancer cell death apoptosis. Furthermore, compound 10c showed a significant reduction in tumor volume in Swiss albino female mice as an breast cancer model. Docking results confirmed the tight binding interactions of compound 10c with the VEGFR-2 binding site, with its binding energy surpassing that of sunitinib. PK studies predicted compound 10c to have good oral bioavailability and a good drug score with low human toxicity risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753467PMC
http://dx.doi.org/10.1039/d4md00754aDOI Listing

Publication Analysis

Top Keywords

compound 10c
24
hct-116 mcf-7
12
hela cells
12
mimetics sunitinib
8
hepg2 hct-116
8
cancer cell
8
10c
8
compounds 10c
8
compound
6
probing structural
4

Similar Publications

Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells.

View Article and Find Full Text PDF

Background: Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

In the current study, new pyranopyrazole analogues (9a-d and 10a-d) were synthesized through a one-pot condensation reaction of 2-arylacetohydrazide. The inhibitory abilities were investigated against the XO enzyme through experimental and molecular docking analyses. The synthesis studies were based on ultrasound-mediated condensation reactions of four-component systems containing 2-arylacetohydrazide, ethyl acetoacetate, indoline-2,3-dione, and ethyl 2-cyanoacetate/malononitrile in various solvents and catalysts to yield pyranopyrazole analogues (9a-d and 10a-d) in a short reaction time and remarkably favorable yields ranging from 79-92%.

View Article and Find Full Text PDF

Semisynthesis of Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity.

J Nat Prod

January 2025

Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.

Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!