Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754135 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.101349 | DOI Listing |
Mater Today Bio
December 2024
College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea.
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Department of Life science, Chung-Ang University, Seoul 06974, Republic of Korea.
Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of genius, one of notorious pest species.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China. Electronic address:
The fermented foods microbiota, whose community structures evolve through a succession of different microbial groups, play a central role in fermented food production. The texture and flavor, functions, shelf-life and safety, are largely determined by the interactions among bacteria and yeast within these communities. Although much indispensable work has described the microbial composition and succession in various fermentation foods, yet the specific microbial interactions involved are not well understood.
View Article and Find Full Text PDFImmunity
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Electronic address:
Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes.
View Article and Find Full Text PDFScience
January 2025
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!