The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous-Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns' high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.e., facilitation) between ferns and other species. Here, we integrate fossil and modern perspectives on fern ecology to propose that ferns act as facilitators of community assemblage following biotic upheaval by stabilizing substrates, enhancing soil properties, and mediating competition. Our reframing of ferns as facilitators has broad implications for both community ecology and ecosystem recovery dynamics, because of ferns' global distribution and habitat diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756664 | PMC |
http://dx.doi.org/10.1093/biosci/biae022 | DOI Listing |
Bioscience
May 2024
Climate Change Institute, School of Biology and Ecology, University of Maine, Orono, Maine, United States.
The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous-Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns' high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.
View Article and Find Full Text PDFPremise: The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial.
Methods: We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns-a lineage of plants high in secondary compounds-and in an array of tissue types.
Genes (Basel)
October 2024
Hainan Institute, Zhejiang University, Sanya 572025, China.
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive.
View Article and Find Full Text PDFA contemporary interpretation of Dollo's Law is that the evolution of specialized structures is irreversible. Among land plants, reproductive specialization shows a trend toward increasing complexity without reversion, raising questions about evolutionary steps and irreversibility of reproductive complexity. Ferns, exhibit varied reproductive strategies, some are dimorphic (producing separate leaves for photosynthesis and reproduction), while others are monomorphic (where one leaf is used for both photosynthesis and spore dispersal).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!