Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity.

Stem Cell Res Ther

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Published: January 2025

Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.

Methods: We isolated and identified dental pulp stem cell-derived intracellular vesicles (DPSC-IV) from human dental pulp tissue. To investigate its effect, DPSC-IV was added to osteoblast or osteoclast differentiation medium. During the orthodontic retention period, DPSC-IV was administrated to rats by subgingival injection. Relapse distance and relapse rate were calculated to evaluate DPSC-IV's ability to prevent relapse. Additionally, Western blot analysis were used to examine DPSC-IV's inhibitory effect on osteoclast differentiation.

Results: DPSC-IV significantly promoted osteoblast differentiation and inhibited osteoclast differentiation. Application of DPSC-IV during retention resulted in a significant reduction in both relapse distance and relapse rate, with improved periodontal structure and decreased osteoclast activity. This effect was mediated by the PI3K/Akt/NF-κB signaling pathway and could be reversed by the PI3K activator insulin-like growth factor-1 (IGF-1).

Conclusion: This study highlights the potential of DPSC-IV as a novel preventive approach against orthodontic relapse, offering a novel strategy for maintaining long-term orthodontic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13287-025-04146-3DOI Listing

Publication Analysis

Top Keywords

dental pulp
12
orthodontic relapse
12
pulp stem
8
stem cell-derived
8
cell-derived intracellular
8
intracellular vesicles
8
relapse
8
osteoclast activity
8
osteoclast differentiation
8
relapse distance
8

Similar Publications

Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity.

Stem Cell Res Ther

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Background: Despite many years of investigation into mesenchymal stem cells (MSCs) and their potential for treating inflammatory conditions such as COVID-19, clinical outcomes remain variable due to factors like donor variability, different tissue sources, and diversity within MSC populations. Variations in MSCs' secretory and proliferation profiles, and their proteomic and transcriptional characteristics significantly influence their therapeutic potency, highlighting the need for enhanced characterization methods to better predict their efficacy. This study aimed to evaluate the biological characteristics of MSCs from different tissue origins, selecting the most promising line for further validation in a K18-hACE2 mouse model of SARS-CoV-2 infection.

View Article and Find Full Text PDF

This experimental phantom study investigates current standard of care protocols in cone beam computed tomography (CBCT), energy-integrating-detector (EID) CT, and photon-counting-detector (PCD) CT regarding their potential in delineation of dental root canals. Artificial accessory canals (diameters: 1000, 600, 400, 300 and 200 μm) were drilled into three bovine teeth mounted on a bovine rib as a jaw substitute. The phantom was scanned in two dental CBCTs, two EID-CTs and a PCD-CT using standard clinical protocols.

View Article and Find Full Text PDF

To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!