Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine. Many microorganisms biosynthesize and accumulate PHB naturally. However, recent advancements in metabolic engineering and synthetic biology have allowed scientists to engineer non-native microorganisms to produce PHB. This review comprehensively summarizes all non-native microbial hosts used for PHB biosynthesis and discusses different metabolic engineering approaches used to enhance PHB production. These strategies include optimizing the biosynthesis pathway through cofactor engineering, metabolic pathway reconstruction, and cell morphology engineering. Moreover, the CRISPR/Cas9 approach is also used for manipulating the genome of non-host microorganisms to enable them produce PHB. Among non-native microbial hosts, Escherichia coli has been successfully used for industrial-scale PHB production. However, further genetic engineering approaches are needed to make non-native microbial hosts more suitable for large-scale PHB production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-025-04261-6 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are among the most promising alternatives to mineral fertilizers. However, little is known about the effects of applied bacteria on the native microbiota, including the rhizobacterial community, which plays a crucial role in bacteria-plant interactions. Therefore, this study is aimed at assessing the effects of PGPB not only on plants but also, importantly, on the native rhizobacterial community of winter oilseed rape.
View Article and Find Full Text PDFbioRxiv
December 2024
Earth, Marine & Environmental Sciences Department, University of North Carolina, Chapel Hill, NC.
Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China. Electronic address:
The derivation of water quality criteria (WQC) for antibiotics is influenced by the inclusion of various organisms' toxicity data, including microbial data, though no definitive conclusions have been reached. This study focuses on sulfonamide antibiotics, common in the Yangtze River Delta (YRD), to assess the influences of different organisms' toxicity data on determining WQCs and subsequent evaluation of ecological risks. A total of 263 toxicity data points from eight sulfonamides, including sulfamethoxazole (SMX) and sulfamethazine (SM2), were selected to derive WQCs using Species Sensitivity Distribution (SSD) methods.
View Article and Find Full Text PDFMol Ecol
January 2025
Brackenridge Field Laboratory, University of Texas at Austin, Austin, Texas, USA.
Plants host diverse assemblages of fungi on their foliar tissues, both in internal compartments and on exterior surfaces. When plant distributions shift, they can move with their fungal associates (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!